• Title/Summary/Keyword: Glass/epoxy

Search Result 589, Processing Time 0.029 seconds

Evaluation of Running Performance of the Composite Bogie under Different Side Beam Stiffness (사이드 빔 강성에 따른 복합소재 대차의 주행성능 평가)

  • Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.86-92
    • /
    • 2017
  • In this study, a running performance evaluation and roller rig test was conducted to evaluate the applicability of a composite bogie frame, which has the role of the primary suspension. The composite bogie frame was made of a GEP224 glass/epoxy prepreg. Vehicle dynamic analysis was carried out on the composite bogie with three different kinds of side beam thicknesses (50 mm, 80 mm, and 150 mm). From the results, the composite bogie with a side beam thickness of 80 mm satisfied all the dynamic design requirements. Although the composite bogie with the side beam thickness of 50mm also met the design requirements, its critical speed was just a 2% margin to the requirement. In contrast, the model of the side beam thickness of 150mm did not meet the ride comfort. In addition, a composite bogie frame with the side beam thickness of 80 mm was fabricated and installed on a complete bogie. Moreover, the roller rig test using the fully equipped bogie was performed to evaluate the critical speed. During the test, the lateral excitation was imposed on the wheelsets to realize the rail irregularity. There was no divergence of the lateral displacement of the wheelsets while increasing the speed. The measured critical speed was similar to the predicted result.

A STUDY ON THE BOND OF AESTHETIC RESTORATIVE MATERIALS TO FLUORIDE TREATED ROOT DENTIN (불소처리된 치근상아질에 대한 심미수복재의 결합에 관한 연구)

  • Tak, Heung-Soo;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Ki-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.197-212
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of fluoride application on the aspect of shear bond strength of three aesthetic restorative materials to dentin. One light-cured composite resin(Palfique Esterite) and two light-cured glass ionomer cements(Fuji II LC and Compoglass)were used in this study. 120 permanent molars were used for this study. The teeth were extracted due to the origin of periodontal disease. The crowns of all teeth were removed, and the remaining roots were embedded in epoxy resin. The mesial or distal surfaces of roots were ground flat to expose dentin and polished on wet 320-, 400-, and 600 grit SIC papers for a total of 120 prepared flat root dentin surfaces. The prepared samples were divided into six groups. Group 1, 3, and 5 were control groups and group 2, 4, and 6 were experimental groups. Sixty samples for experimental groups were treated with 2% NaF solution for 5 minutes. Group 1 and 2 were bonded with Plafique Esterite, group 3 and 4 were bonded with Fuji II LC, and group 5 and 6 were bonded with Compoglass. After 24 hours water storage at $37{\pm}1^{\circ}C$, all samples were subjected to a shear to fracture with Instron universal testing machine(No.4467) at 1.0 mm/min displacement rate. Dentin surfaces treated with each conditioners before bonding and interfacial layers between dentin and aesthetic restorative materials were observed under Scanning Electron Microscope(Hitachi S-2300) at 20Kvp. The data were evaluated statistically at the 95% confidence level with ANOVA test. The result were as follows; 1. Among the control groups, group 1 showed strongest bond strength and group 3 showed weakest. 2. Among the experimental groups, group 2 showed strongest bond strength and group 6 showed weakest. 3. Statistical analysis of the data showed that pretreatment of dentin with 2% NaF solution significantly decreased the bond strength of three aesthetic restorative materials to dentin(P<0.05). 4. SEM findings of fluoride treated dentin surfaces (2, 4, 6 group) demonstrated dentin surfaces covered with fluoridated reaction products. 5. Except group 4 and 6, resin tags were formed in all groups.

  • PDF

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

Stiffness Enhancement of Piecewise Integrated Composite Robot Arm using Machine Learning (머신 러닝을 이용한 PIC 로봇 암 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seokwoo;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.303-308
    • /
    • 2022
  • PIC (Piecewise Integrated Composite) is a new concept for designing a composite structure with mosaically assigning various types of stacking sequences in order to improve mechanical properties of laminated composites. Also, machine learning is a sub-category of artificial intelligence, that refers to the process by which computers develop the ability to continuously learn from and make predictions based on data, then make adjustments without further programming. In the present study, the tapered box beam type PIC robot arm for carrying and transferring wide and thin LCD display was designed based on the machine learning in order to increase structural stiffness. Essential training data were collected from the reference elements, which were intentionally designated elements among finite element models, during preliminary FE analysis. Additionally, triaxiality values for each finite element were obtained for judging the dominant external loading type, such as tensile, compressive or shear. Training and evaluating machine learning model were conducted using the training data and loading types of elements were predicted in case the level accuracy was fulfilled. Three types of stacking sequences, which were to be known as robust toward specific loading types, were mosaically assigned to the PIC robot arm. Henceforth, the bending type FE analysis was carried out and its result claimed that the PIC robot arm showed increased stiffness compared to conventional uni-stacking sequence type composite robot arm.

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers (아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가)

  • Dong-Hwan Kim;Min-Su Jo;Jin-Hyeung Choi;Woo-Rae Cho;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • This study evaluates the performance of reinforced concrete columns using hybrid fiber sheets for structural behavior. The purpose of this method is to improve the load-bearing capacity of the reinforced structure by impregnating a hybrid fiber sheet, which is woven by arranging aramid and glass fibers uniaxially and attached to an aged concrete structure requiring reinforcement with epoxy. In particular, not only the weight reduction of the material obtained by using a fiber lighter than the steel material, but also the low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element. The low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element, resulting in weight reduction compared to steel. The study conducted structural tests on four specimens, with the hybrid reinforcement method and failure mode as main variables. Specimen size and loading conditions were chosen to be comparable with previous studies. The structural performance of the specimen was evaluated using energy dissipation capacity and ductility. Analysis shows that excellent results can be obtained with the hybrid fiber sheet reinforcement.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Chemo-Mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine (DDM, DDS) Resin Casting Systems (DGEBA/방향족 아민(DDM, DDS) 경화제의 벤젠링 사이의 관능기 변화가 물성 변화에 미치는 영향에 대한 연구)

  • 명인호;정인재;이재락
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with diaminodiphenyl methane (DDM), diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work, the effect of aromatic amine curing agents. In contrast, the results show that the DGEBA/DDS cure system having the sulfone structure between the benzene rings had higher values in the conversion of epoxide, density, shrinkage (%), glass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBA/DDM cure system having methylene structure between the benzene rings, whereas the DGEBA/DDM cure system presented higher values in the maximum exothermic temperature, thermal expansion coefficient, and thermal stability. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property and stem from the effect of the conversion ratio of epoxide group. The result of fractography shows that the each grain size of the DDM/DGEBA system with feather-like structure is larger than that of the DDS/DGEBA system.

  • PDF

A Study of the Comparison of Microleakage according to the Types of Cement on the Cast Post and Core (주조 포스트코아에서 시멘트 종류가 미세누출에 미치는 영향)

  • Nam, Ki-Young;Lee, Cheong-Hee;Cho, Kwang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.1
    • /
    • pp.51-60
    • /
    • 2000
  • The purpose of this study was to compare the microleakage at the interface of cast post and tooth according to the type of cement. Forty anterior teeth with single root were used. The teeth were cut 2 mm coronal from the cementoeamel junction and chamfer finish line was made on 1 mm coronal from the cementoeamel junction. After the routine endodontic treatment, post space was prepared using #5.5 Parapost drill to a depth of 7 mm. After the pick up impression, core building was made to 3 mm of clinical crown with burnout wax, then post and core was cast with nonprecious metal. The teeth were divided into four groups of ten each. In Group I, post and core were cemented with Fleck's(Zinc phosphate cement) In Group II, post and core were cemented with Fuji I(Glass ionomer cement) In Group III, post and core were cemented with Superbond C & B(Composite resin cement) In Group IV, post and core were cemented with Panavia 21(Composite resin cement) All cemented teeth were stored in normal saline at $37^{\circ}C$ for 7 days and thermocycled from $5^{\circ}C$ to $55^{\circ}C$ for 500 cycles with a dwell time of 30 seconds. After thermocycling, teeth were immersed in 1% Basic fuchsin dye for 48 hours. All 40 teeth were then embedded in the epoxy resin and cut buccolingually with a cutting instrument. The degree of penetration of dye at interface was graded on a scale of 0 to 4 using a stereomicroscope at 25 to 40 times magnification. Through the findings of this study, the following conclusion were obtained. 1. All the groups showed the microleakage at the interface of cast post core and tooth. 2. Group I showed the highest microleakage score among the groups with a significant difference(p<0.05). 3. Group II showed higher microleakage score than Group III and Group IV with a significant difference(p<0.05). 4. Group IV showed the lowest microleakage score but there were no significant difference with Group III(p>0.05).

  • PDF