• Title/Summary/Keyword: Glancing angle deposition (GLAD)

Search Result 17, Processing Time 0.037 seconds

Study of Chromium thin films deposited by DC magnetron sputtering under glancing angle deposition at low working pressure

  • Bae, Kwang-Jin;Ju, Jae-Hoon;Cho, Young-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.181.2-181.2
    • /
    • 2015
  • Sputtering is one of the most popular physical deposition methods due to their versatility and reproducibility. Synthesis of Cr thin films by DC magnetron sputtering using glancing angle deposition (GLAD) has been reported. Chromium thin films have been prepared at two different working pressure($2.0{\times}10-2$, 30, $3.3{\times}10-3torr$) on Si-wafer substrate using magnetron sputtering with glancing angle deposition (GLAD) technique. The thickness of Cr thin films on the substrate was adjusted about 1 mm. The electrical property was measured by four-point probe method. For the measurement of density in the films, an X-ray reflectivity (XRR) was carried out. The sheet resistance and column angle increased with the increase of glancing angle. However, nanohardness and density of Cr thin films decreased as the glancing angle increased. The measured density for the Cr thin films decreased from 6.1 to 3.8 g/cc as the glancing angle increased from $0^{\circ}$ to $90^{\circ}$ degree. The low density of Cr thin films is resulted from the isolated columnar structure of samples. The evolution of the isolated columnar structure was enhanced at the conditions of low sputter pressure and high glancing angle. This GLAD technique can be potentially applied to the synthesis of thin films requiring porous and uniform coating such as thin film catalysts or gas sensors.

  • PDF

Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition (폴리머 기판에 스퍼터법으로 경사 증착한 Cr박막의 특성)

  • Bae, Kwang-Jin;Choi, In-Kyun;Jeong, Eun-Wook;Kim, Dong-Yong;Lee, Tae-Yong;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a $90^{\circ}$ glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at $0^{\circ}$. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.

Design and fabrication of circular-polarization separator using a glancing angle deposition (Helical structure) (경사입사 증착법 (나선형 구조)을 이용한 원편광 분리소자의 설계 및 제작)

  • Park, Yong-Jun;HwangBo, Chang-Gwon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.02a
    • /
    • pp.151-152
    • /
    • 2007
  • In this study, the optical porosity of $TiO_2$ films with helical structure deposited by glancing angle deposition (GLAD) were investigated. Helical films are of interest due to their ability to differentiate states of circularly polarized light. We designed and fabricated normal-incidence circular-polarization separator deposited by GLAD (Helical structure). The optical porosity of $TiO_2$ film deposited by helical method can be applied many optical coatings.

  • PDF

Properties of Indium Tin Oxide Multilayer Fabricated by Glancing Angle Deposition Method

  • Oh, Gyujin;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.367-367
    • /
    • 2013
  • Commercial applications of indium tin oxide (ITO) can be separated into two useful areas. As it is perceived to bear electrical properties and optical transparency at once, its chance to apply to promising fields, usually for an optical device, gets greater in the passing time. ITO is one of the transparent conducting oxides (TCO), and required to carry the relative resistance less than $10^{-3}{\Omega}$/cm and transmittances over 80 % in the visible wavelength of light. Because ITO has considerable refractive index, there exist applications for anti-reflection coatings. Anti-reflection properties require gradual change in refractive index from films to air. Such changes are obtained from film density or nano-clustered fractional void. Glancing angle deposition (GLAD) method is a well known process for adjusting nanostructure of the films. From its shadowing effects, GLAD helps to deposit well-controlled porous films effectively. In this study, we are comparing the reference sample to samples coated with controlled ITO multilayer accumulated by an e-beam evaporation system. At first, the single ITO layer samples are prepared to decide refractive index with ellipsometry. Afterwards, ITO multilayer samples are fabricated and fitted by multilayer ellipsometric model based on single layer data. The structural properties were measured by using atomic force microscopy (AFM), and by scanning X-ray diffraction (XRD) measurements. The ellipsometry was used to determine refractive indices and extinction coefficient. The optical transmittance of the film was investigated by using an ultraviolet-visible (UV-Vis) spectrophotometer.

  • PDF

Effects of surface geometry of MgO protective layer for AC-PDPs

  • Park, Sun-Young;Moon, Sung-Hwan;Heo, Tae-Wook;Kim, Jae-Hyuk;Lee, Joo-Hwi;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1395-1398
    • /
    • 2007
  • MgO thin films were deposited by e-beam evaporator using the 2-step method for alternate current plasma display panels (AC-PDPs). Glancing angle deposition (GLAD) method was employed to produce various surface geometry of the thin film; the bottom layer was deposited on a substrate by normal e-beam evaporation method and the top layer was deposited on bottom layer with $85^{\circ}$ by GLAD method. Results show that firing and sustain voltages improved as the sharpness of surface and isolated columnar structures increases, respectively.

  • PDF

Characterization of $ZrO_2$ thin films fabricated by glancing angle deposition

  • Sobahan, K.M.A;Park, Yong-Jun;HwangBo, Chang-Kwon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.281-282
    • /
    • 2008
  • The glancing angle deposition (GLAD) technique was used to fabricate $ZrO_2$ thin films by electron-beam evaporation. The crystal structure, cross-sectional structure, surface morphology and optical properties are characterized by X-ray diffraction meter (XRD, Rigaku, Cu $K{\alpha}$ - radiation), scanning electron microscope (SEM), and spectrophotometer, respectively.

  • PDF

The Effect of Speed of Deposited Atom on Growth Morphology (증착원자의 속력이 성장 지형에 미치는 영향)

  • Seo, J.;Shim, H.S.;Kim, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • We have studied the effect of speed of deposited atom on morphology evolution during Glancing Angle Deposition (GLAD). Using Kinetic Monte Carlo simulation that incorporate molecular dynamics simulations, we have shown that the rough surface morphology became smoother as the speed of deposited atom is increased. The growth exponent ${\beta}$ change from 0.97 to 0.67 as the speed increase from ${\upsilon}_0$ to $10{\upsilon}_0$ in the case of GLAD. We also examined the effect of speed of deposited atom for the case of chemical vapor deposition (CVD) simulation. Compared to GLAD, the variation in scaling exponent ${\beta}$ is small but the speed of deposited atom also have considerable effect on growth morpholgy in the case of CVD.