• Title/Summary/Keyword: Gl checkpoint

Search Result 4, Processing Time 0.023 seconds

Characterization and Isolation of Mutants Involved in Cell Cycle Progression and Regulation in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 세포주기의 진행과 조절에 관련된 변이주들의 분리 및 특성화)

  • 박정은;임선희;선우양일
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • These studies were carried out to understand the mechanisms of genes which are related in cell cycle progression at G1/S phase. Mutants involved in cell cycle progression and regulation in Saccharomyces cerevisiae were isolated and characterized. To isolate new mutants, we screened the sensitivity to ciclopirox olamine (CPO) which inhibits the cell cycle traverse at or very near the G1/S phase boundary in HeLa cell and budding yeast. As results, we isolated 30 mutants and named cos(ciclopirox olamine sensitivity: cos27∼cos57) mutants. To determine the phenotype of mutants, we examined the sensitivity to methyl-methane sulfonate (MMS) and hydroxyurea (HU). Several mutants were sensitive to MMS and HU. According to these Phenotypes, cos mutants were grouped into four. Group I mutants are cos27, cos28, cos32, cos33, cos36, cos37, cos40, cos42, cos46, cos50, cos52 and cos53 which show MMS, HU sensitivities and might act at a checkpoint pathway during S phase. Group II mutants are cos43 and cos48 which show MMS sensitivities and might act at a checkpoint pathway during Gl or G2 phase. Group III mutants are cos35, cos47, cos54, cos55 and cos56 which show HU sensitivities and might act at a progress pathway during S phase. Finally, Group IV mutants are cos29, cos30, cos31, cos34, cos38, cos39, cos41, cos44, cos45, cos49, cos51 and cos57 which show only CPO sensitivities. Moreover, we examined the terminal phenotype of mutants under fluorescent microscope and then found one of S phase checkpoint related mutant(cos37). Furthermore, we constructed the heterozygote strain between mutant and wild type haploid strains to study their genetic analysis of cos mutants.

  • PDF

Effect of Ailanthus altissima Water Extract on Cell Cycle Control Genes in Jurkat T Lymphocytes (Jurkat T 임파구의 세포주기 기전에 미치는 저근백피(Ailanthus altissima)의 효과)

  • 전병훈;황상구;이형철;김춘관;김대근;이기옥;윤용갑
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Ailanthus altissima has been used to settle an upset stomach, to alleviate a fever and as an insecticide. We reported that the water extract of A. altissima induced apoptotic cell death in Jurkat T-acute Iymphoblastic leukemia cells. Here, we showed the dose-dependent inhibitions of cell viability by the extract, as measured by cell morphology. The cell cycle control genes are considered to play important roles in tumorigenesis. The purpose of the present study is also to investigate the effect of A. altissima on cell cycle progression and its molecular mechanism in the cells. The level of p21 protein was increased after treatment of the extract, whereas both Bcl-2 and Bax protein levels were not changed. These results suggest that A. altissima induces apoptotic cell death via p21-dependent signaling pathway in Jurkat cells which delete wild type p53. Gl checkpoint related gene products tested (cyclin D3, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manner after treatment of the extract Taken together, these results indicate that the increase of apoptotic cell death by A. altissima may be due to the inhibition of cell cycle in Jurkat cells.

Effect of the Water Extract of Albizzia julibrissin on Cell Cycle Progression in the Human Leukemic Jurkat Cells (백혈병세포주 Jurkat의 세포주기 억제에 미치는 합환피(Albizzia julibrissin) 물 추출물의 효과)

  • Hwang, Sang-Gu;Lee, Hyung-Chul;Kim, Dae-Geun;An, Won-Gun;Jeon, Byung-Hun
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.29-34
    • /
    • 2002
  • Albizzia julibrissin belonging to the family Leguminosae has been used for the treatment of contusion, sore throat, amnesia, and insomnia in Oriental traditional medicine. The water extract of A. julibrissin induced apoptosis in Jurkat T-acute lymphoblastic leukemia (ALL) cells as measured by cell morphology. The capability of this herb medicine to induce apoptosis was associated with proteolytic cleavage of specific target protein such as beta-catenin protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of A. julibrissin on cell cycle progression. Our results showed that GI checkpoint related gene products (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by A. julibrissin may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle (세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전)

  • Jeong Soo-Jin;Jeong Min-Ho;Jang Ji-Yeon;Jo Wol-Soon;Nam Byung-Hyouk;Jeong Min-Za;Lim Young-Jin;Jang Byung Gon;Youn Seon-Min;Lee Hyung Sik;Hur Won Joo;Yang Kwang Mo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.306-314
    • /
    • 2003
  • Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.