• Title/Summary/Keyword: Ginsenoside-Rc

Search Result 250, Processing Time 0.025 seconds

Production of Minor Gisenosides from Gypenoside V (Gypenoside V로부터 minor ginsenosides의 생산)

  • Son, Na-Ri;Min, Jin-Woo;Jang, Mi;Kim, Hyo-Yeon;Jeon, Ji-Na;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.20-20
    • /
    • 2010
  • Panax ginseng C.A Meyer is frequently taken orally as a traditional herbal medicine in Asian countries. The major components of ginseng are ginsenoside, which are pharmaceutical activity. The six major ginsenosides, including Rb1, Rb2, Rc, Rd, Re and Rg1 account for 90% of total ginsenosides. Even though the minor ginsenosides, including Rg3, Rh2 and compound K has high pharmacetical activities, the price of minor ginsenosides is too high. Therefore we isolated the gypenoside V and made it converted to minor ginsenosides. In the plant Gynostemma pentaphyllum Makino, gypenosdie V was presented as dominant saponin (content about 2.4%), and was similar to protopanaxadol type ginsenosides such as ginsenoside Rb1. In this study, we confirmed that the coversion of gypenoside V to minor ginsenosides after using the various treatment such as heating, acid treatment, commercial edible enzyme, and lactobacillus. Consequently, we optimizied the transformation of gypenoside V to minor ginsenoside using Thin Layer Chromatography (TLC), High Performance Liquid Chromatography (HPLC), Time-of-flight Mass Spectrometry (LC/TOF/MS).

  • PDF

The Comparative of Growth Characteristics and Ginsenoside Contents in Wild-simulated Ginseng (Panax ginseng C.A. Meyer) on Different Years by Soil Properties of Cultivation Regions

  • Kim, Kiyoon;Huh, Jeong-Hoon;Um, Yurry;Jeon, Kwon Seok;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.651-658
    • /
    • 2020
  • The aim of this study was to investigate the comparative growth characteristics and ginenoside contents of wild-simulated ginseng on different years (7 and 13-year-old) by monitoring soil properties of cultivation regions. Plant and soil samples were collected from 6 different cultivation regions. Soil organic matter (OM), total nitrogen (TN) and cation exchangeable capacity (CEC) were significantly higher in 13-year-old wild-simulated ginseng cultivation regions compared to 7-year-old wild-simulated ginseng cultivation regions. Growth characteristics of wild-simulated ginseng had shown significantly higher in 13-year-old wild-simulated ginseng compared to 7-year-old wild-simulated ginseng. Ginsenoside G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 were significantly higher in 13-year-old wild-simulated ginseng than 7-year-old wild-simulated ginseng. According to the results of correlation analysis, soil OM, TN and CEC of the cultivated regions were positively correlated with the growth of wild-simulated ginseng. In addition, the root length of wild-simulated ginseng showed positive correlation with ginsenoside content. Hence, this study was able to investigate the correlation between growth and ginsenoside content of wild-simulated ginseng based on soil characteristics of the cultivation regions.

Increase of Membrane Potential by Ginsenosides in Prostate Cancer and Glioma cells

  • Lee, Yun-Kyung;Im, Young-Jin;Kim, Yu-Lee;Sacket Santosh J.;Lim, Sung-Mee;Kim, Kye-Ok;Kim, Hyo-Lim;Ko, Sung-Ryong;Lm, Dong-Soon
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.70-77
    • /
    • 2006
  • Ginseng has an anti-cancer effect in several cancer models. As a mechanism study of ginsenoside-induced growth inhibition in cancer cells, we measured change of membrane potential in prostate cancer and glioma cells by ginsenosides, active constituents of ginseng. Membrane potential was estimated by measuring fluorescence change of DiBAC-Ioaded cells. Among 11 ginsenosides tested, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased significantly and robustly the membrane potential in a concentration-dependent manner in prostate cancer and glioma cells. Ginsenosides Rc, Ro, and $Rb_1$ slightly increased membrane potential. The ginsenoside-induced membrane potential increase was not affected by treatment with pertussis toxin or U73122. The ginsenoside-induced membrane potential increase was not diminished in $Na^+$-free or $HCO_3^-$-free media. Furthermore, the ginsenoside-induced increase of membrane potential was not changed by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), SITS (4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), and omeprazole. In summary, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased membrane potential in prostate cancer and glioma cells in a GPCR-independent and $Na^+$ independent manner.

Ginsenoside composition of Panax ginseng flower extracts obtained using different high hydrostatic pressure extraction conditions

  • Kim, Hyun Soo;Kim, Gyu Ri;Kim, Donghyun;Zhang, Cheng-Yi;Lee, Eun-Soo;Park, Nok Hyun;Park, Junseong;Lee, Chang Seok;Shin, Moon Sam
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.56-60
    • /
    • 2019
  • Ginsenosides are active constituents of ginseng (Panax ginseng) that have possible anti-aging, physiological and pharmacological activities, such as anti-cancer and anti-inflammatory effects. Although the ginseng root is generally used more often than the aerial parts for medicinal purposes, the flowers also contain numerous ginsenosides, including Rb2, Rc, Rd, Re and Rg1. Therefore, an extract from the flowers of the P. ginseng could have the pharmacological efficacy of bioactive compounds including ginsenosides. The high hydrostatic pressure extraction (HHPE) is a method that is used for the efficient extraction of bioactive compounds from plant materials. In this study, we compared the yield of ginsenosides from ginseng flowers under different conditions of extraction pressure and time of HHPE. The results indicate that the total yield of the ginsenosides improved as the pressure increased from 0.1 to 80 MPa and treatment duration increased to 24 hours. In addition, the ginsenoside extracts from HHPE at 80 MPa, which possessed a higher total ginsenoside concentration, decreased the viability of the primary human epidermal keratinocytes (HEKs) significantly than the ginsenoside extracts from HHPE at 0.1 MPa. Collectively, we found that the method of HHPE that was performed for 24 hours at 80 MPa showed the highest yield of ginsenosides from the flowers of P. ginseng. In addition, our study provides a foundation for the efficient extraction of ginsenosides, which had a potent bioactivity, from flowers of P. ginseng through HHPE.

Ginsenoside $Rb_1$: the Anti-Ulcer Constituent from the Head of Panax ginseng

  • Jeong, Choon-Sik;Hyun, Jin-Ee;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.906-911
    • /
    • 2003
  • We previously reported that the butanol (BuOH) fraction of the head of Panax ginseng exhibited gastroprotective activity in peptic and chronic ulcer models. In order to identify the active constituent, an activity-guided isolation of the BuOH faction was conducted with a HCI$.$ethanol-induced gastric lesion model. The BuOH fraction was passed through a silica-gel column using a chloroform-methanol gradient solvent system, and six fractions (frs. 1-6) were obtained. The active fr. 5 was further separated by silica-gel column, to yield 6 subfractions (subfrs. a-f). Subfr. d was composed of ginsenosides Re, Rc and $Rb_1$. The most active constituent was ginsenoside $Rb_1$ ($GRb_1$), a protopanaxadiol glycoside, which was investigated for its anti-ulcer effect. Gastric injury induced by HCI$.$ethanol, indomethacin and pyloric ligation (Shay ulcer) was apparently reduced with oral $GRb_1$ doses of 150 and 300 mg/kg. $GRb_1$ at these dosage significantly increased the amount of mucus secretion in an ethanol-induced model. The anti-ulcer effects were consistent with the result of histological examination. These results suggest that the major active constituent in the head of Panax ginseng is $GRb_1$ and that anti-ulcer effect is produced through an increase in mucus secretion.

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (사람의 장내세균에 의한 인삼사포닌의 대사)

  • Sung, Jong-Hwan;Hasegawa, Hideo;Matsumiya, Satoshi;Uchiyama, Masamori;Ha, Joo-Young;Lee, Moon-Soon;Huh, Jae-Doo
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The metabolism of ginseng saponins by human intestinal bacteria was studied using human feces under anaerobic culture conditions. $Ginsenoside-Rb_1$, $-Rb_2$ and -Rc(protopanaxadiol type) were mainly metabolized to compound-K(C-K), $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyl]-20(S)-protopanaxadiol(compound-Y,\;C-Y)$, $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyll-20(S)-protopanaxadiol(ginsenosied-MC,{\;}MC)$, respectively, and $ginsenoside-Rg_1$ and -Re(protopanaxatriol type) to their aglycon, 20(S)-protopanaxatriol, though the pathway and rate of the metabolism were affected by fermentation medium. C-K was not decomposed any more, while C-Y and Mc were both gradually hydrolyzed to C-K.

  • PDF

Antioxidant and Antimicrobial Activities of Various Solvent Fractions of Fine Ginseng Root

  • Lim, Jae-Kag;Kang, Ho-Jin;Kang, Suk-Nam;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.513-518
    • /
    • 2009
  • This study was carried out to investigate the changes of yield, total phenolics, saponin content and composition, antimicrobial, and antioxidant activities of various fractions of fine ginseng root (Panax ginseng C.A. Mayer) by maceration method in the order of increasing polarity (hexane, chloroform, ethyl acetate, butanol, and water). Butanol fraction showed the highest total saponin content compare to other fractions. Hexane fraction could harvest significantly high ginsenoside Rg2, Rg1, and Rf (p<0.05). And the contents of ginsenoside Rh1, Rg3, and Rg1 showed relatively higher in the fraction of ethyl acetate than other fractions. The system of hexane-chloroform-ethyl aceate-butanol showed relatively high content of ginsenoside Re, Rd, Rc, Rb3, and Rb1. However, the last fraction of water still remained lots of Rb2 content. The fraction of water was the highest phenolics. The 1,1-diphenyl-2-picryhydrazil, superoxide, and hydroxyl radical scavenging activity of water fraction was higher than the other fractions. In antimicrobial activity, the fraction of hexane showed relatively high antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus, and Escherichia coli. And the fractions of the chloroform and ethyl acetate showed higher antimicrobial activities than the other samples in against P. aeruginosa and S. typhimurium.

The wound healing and anti-inflammatory effects of Panax ginseng C.A Meyer

  • Oh Ji-Yeon;Jeo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 1996
  • Ginseng has been used as miraculous panacea since ancient times in oriental countries. In spite of voluminous work, ginseng still remains mysterious herb, but its value is becoming more recognized in the pharmaceutical and cosmetic fields. In this study, we investigated the effect of Panax ginseng on wound healing using two experimental methods. First, we studied the effect of ginseng on artificial wound of cultured human keratinocyte monolayer. Indivisual components from ginseng (ginsenoside Rb2, Rc, Re, Rg1, and panasenoside) and giseng extrats were examined. Of them, compared with control, ginsenoside Rb2 and Rg1 needed much shorter time to recover original appearance of momolayer. Second, we investigated the effect of ginseng on acute injury on dorsal skin of hairless mice. We here observed that ginseng has prominent effect than Madecasol(asiaticoside), a well known wound healing agent. These results were deduced that ginseng promoted wound healing in the wound region due to its stimulation of biosynthesis of various endogeneous materials that have relation to wound healing. Furthermore, we conformed that ginsenoside Rg1 exhibited anti-inflammatory activity on rat paw edema induced by carageenan. These results suggest that Panax ginseng C.A Meyer can be used in the cosmetics in that its wound healing and anti-inflammatory effects.

  • PDF

The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

  • Gui, Ying;Ryu, Gi Hyung
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.219-226
    • /
    • 2013
  • This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature $115^{\circ}C$ and $130^{\circ}C$) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than non-extruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature $130^{\circ}C$) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature $130^{\circ}C$). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products.

Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time

  • Kim, Chan Joong;Kim, Bo Mi;Kim, Cheon Suk;Baek, Jung Yeon;Jung, In Chan
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.79-87
    • /
    • 2020
  • Objectives: Ginsenosides found in ginseng, and the hydrolysates derived from their conversion, exhibit diverse pharmacological characteristics [1]. These have been shown to include anti-cancer, anti-angiogenic, and anti-metastatic effects, as well as being able to provide hepatic and neuroprotective effects, immunomodulation, vasodilation, promotion of insulin secretion, and antioxidant activity. Therefore, the purpose of this study was to examine how quickly the ginsenosides decompose and what kinds of degradation products are created under physicochemical processing conditions that don't involve toxic chemicals or other treatments that may be harmful. Methods: The formation of ginsenoside-Rg2 and ginsenoside-Rg3 was examined. These demonstrated diverse pharmacological effects. Results: We also investigated physicochemical factors affecting their conversion. The heating temperatures and times yielding the highest concentration of ginsenosides (-Rb1, -Rb2, -Rc, -Rd, -Rf, -Rg1, and -Re) were examined. Additionally, the heating temperatures and rates of conversion of these ginsenosides into new 'ginseng saponins', were examined. Conclusion: In conclusion, obtained provide us with effective technology to control the concentration of both ginsenosides and the downstream converted saponins (ginsenoside-Rg2, Rg3, Rg5, and Rk1 etc.), as well as identifying the processing conditions which enable an enrichment in concentration of these compounds.