• Title/Summary/Keyword: Ginsenoside Rs

Search Result 16, Processing Time 0.018 seconds

The Comparative Understanding between Red Ginseng and White Ginsengs, Processed Ginsengs (Panax ginseng C. A. Meyer) (홍삼과 백삼의 비교 고찰)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Ginseng Radix, the root of Panax ginseng C. A. Meyer has been used in Eastern Asia for 2000 years as a tonic and restorative, promoting health and longevity. Two varieties are commercially available: white ginseng(Ginseng Radix Alba) is produced by air-drying the root, while red ginseng(Ginseng Radix Rubra) is produced by steaming the root followed by drying. These two varieties of different processing have somewhat differences by heat processing between them. During the heat processing for preparing red ginseng, it has been found to exhibit inactivation of catabolic enzymes, thereby preventing deterioration of ginseng quality and the increased antioxidant-like substances which inhibit lipid peroxide formation, and also good gastro-intestinal absorption by gelatinization of starch. Moreover, studies of changes in ginsenosides composition due to different processing of ginseng roots have been undertaken. The results obtained showed that red ginseng differ from white ginseng due to the lack of acidic malonyl-ginsenosides. The heating procedure in red ginseng was proved to degrade the thermally unstable malonyl-ginsenoside into corresponding netural ginsenosides. Also the steaming process of red ginseng causes degradation or transformation of neutral ginsenosides. Ginsenosides $Rh_2,\;Rh_4,\;Rs_3,\;Rs_4\;and\;Rg_5$, found only in red ginseng, have been known to be hydrolyzed products derived from original saponin by heat processing, responsible for inhibitory effects on the growth of cancer cells through the induction of apoptosis. 20(S)-ginsenoside $Rg_3$ was also formed in red ginseng and was shown to exhibit vasorelaxation properties, antimetastatic activities, and anti-platelet aggregation activity. Recently, steamed red ginseng at high temperature was shown to provide enhance the yield of ginsenosides $Rg_3\;and\;Rg_5$ characteristic of red ginseng Additionally, one of non-saponin constituents, panaxytriol, was found to be structually transformed from polyacetylenic alcohol(panaxydol) showing cytotoxicity during the preparation of red ginseng and also maltol, antioxidant maillard product, from maltose and arginyl-fructosyl-glucose, amino acid derivative, from arginine and maltose. In regard to the in vitro and in vivo comparative biological activities, red ginseng was reported to show more potent activities on the antioxidant effect, anticarcinogenic effect and ameliorative effect on blood circulation than those of white ginseng. In oriental medicine, the ability of red ginseng to supplement the vacancy(허) was known to be relatively stronger than that of white ginseng, but very few are known on its comparative clinical studies. Further investigation on the preclinical and clinical experiments are needed to show the differences of indications and efficacies between red and white ginsengs on the basis of oriental medicines.

Antioxidant activity of ginseng cultivated under mountainous forest with different growing years

  • Pan, Hong-Yan;Qu, Yang;Zhang, Jian-Kui;Kang, Ting-Guo;Dou, De-Qiang
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.355-360
    • /
    • 2013
  • Ginseng cultivated and grown naturally under mountainous forest is formally called "Lin-Xia-Shan-Shen" (LXSS) and grown in manual condition is called garden ginseng (GG) according to Chinese pharmacopoeia (2010 edition). Usually the growing condition of LXSS is similar to wild ginseng and mostly used in Chinese folks in ancient times. The antioxidant properties of LXSS with different growing years were evaluated by their inhibitions of thiobarbituric acid-reactive substance (TBA-RS) formation in liver homogenate and 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity comparing with those of GG. The inhibitions of different polar extracts (n-butanol and water) of LXSS and GG on TBA-RS formation were also evaluated. The results showed that the antioxidant effects of LXSS were higher than those of GG and the TBA-RS formation inhibition of LXSS with longer growing years were stronger than those with shorter growing years, while the DPPH-radical scavenging activity of LXSS did not show significant difference with the change of the growing year. The results indicated that the inhibitory effect of TBA-RS formation and the DPPH-radical scavenging of LXSS were correlated with the contents of ginsenosides. In adddition, the starch contents of LXSS and GG were determined by micro-amount method with spectrophotometer. It showed that the starch content in GG was higher than that of LXSS whose starch decreased gradually with the growing year.

Studies on Pharmaceutical Quality of Oriental Medicinal Preparations (I) - Studies on Decoction of Nokyong-Sagunja-Tang - (한방방제의 제제학적 연구(1) - 추출방법에 따른 녹용사군자탕의 비교 -)

  • Choi, Hyuck-Jae;Kim, Eun-Jin;Kim, Sung-Soo;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.3
    • /
    • pp.143-150
    • /
    • 2006
  • Decoction of oriental medicinal preparation is prepared in various manners, and changes of chemical constituents might be occurred depending on the processing techniques. The present study was undertaken to investigate the phγsio-chemical and pharmacological equivalence between two extraction methods of Nokyong-sagunja-Tang. Samples were Prepared as follows ; Sample-I was prepared by simultaneously extracting Sagunja-Tang and velvet antler in one vessel. Sample-lI was prepared by adding velvet antler exact to the water extract of Sagunja-Tang. Both sanples showed similar results of physiochemical parameters such as pH, yield, TLC and HPLC chromatogram, and contents of ginsenoside $Rb_1$ and glycyrrhizin. Also, there were little different between two samples in pharmacological effects such as DPPH free radical scavenging effect, and inhibitory effects on xanthine oxidase, hyaluronidase, trypsin, TBA-Rs formation and hemolysis in vitro. And both samples showed no significant difference in antifatigue activities in mice. These results suggest that there might be little difference between two extraction process when velvet antler added to Sagunia-Tang.

Complete genome sequence of Niabella ginsenosidivorans BS26T, a ginsenoside-converting bacterium, isolated from compost (퇴비에서 분리한 진세노사이드 전환능력이 있는 Niabella ginsenosidivorans BS26T 의 유전체 서열 분석)

  • Lee, Young-Woo;Siddiqi, Muhammad Zubair;Liu, Qing-Mei;Kim, Dae-Cheol;Im, Wan-Taek
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.465-467
    • /
    • 2018
  • An orange-colored, rod-shaped strain, designated Niabella ginsenosidivorans $BS26^T$, was isolated from compost. Strain $BS26^T$ showed the ability to convert major ginsenosides to minor ginsenosides, and its whole genome was sequenced. The whole genome of N. ginsenosidivorans $BS26^T$ consists of a single circular chromosome of 5,627,734 bp with 44.48% G + C content. Based on the complete genome sequence of strain $BS26^T$, we found several glycosides hydrolase-encoding genes that might involve in the conversion of major ginsenosides into minor ginsenoside and deliberate its strong pharmacological effects.

Complete genome sequence of Lactobacillus koreensis 26-25, a ginsenoside converting bacterium, isolated from Korean kimchi (김치에서 분리한 진세노사이드 전환 능력이 있는 Lactobacillus koreensis 26-25의 유전체 서열 분석)

  • Kim, Ju-Hyeon;Liu, Qing-Mei;Srinivasan, Sathiyaraj;Kim, Myung Kyum;Kim, Sang Yong;Wee, Ji-Hyang;Im, Wan-Taek
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.477-479
    • /
    • 2018
  • A Gram-positive, rod-shaped, ivory colored, and motile, Lactobacillus koreensis 26-25 was isolated from Korean kimchi. Strain 26-25 showed the ability of conversion from major ginsenosides into minor ginsenosides for which whole genome was sequenced. The whole genome sequence of Lactobacillus koreensis 26-25 consisted of one circular chromosome comprised of 3,006,812 bp, with a DNA G + C content of 49.23%. The whole genome analysis of strain 26-25 showed many glycosides hydrolase genes, which may contribute to identify the genes responsible for transformation of major ginsenosides into minor ginsenosides for its high pharmacological effects.

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation

  • Lee, Byung-Hwan;Choi, Sun-Hye;Pyo, Mi Kyung;Shin, Tae-Joon;Hwang, Sung-Hee;Kim, Bo-Ra;Lee, Sang-MoK;Lee, Jun-Ho;Lee, Joon-Hee;Lee, Hui Sun;Choe, Han;Han, Kyou-Hoon;Kim, Hyoung-Chun;Rhim, Hyewhon;Yong, Joon-Hwan;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2009
  • Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.