• 제목/요약/키워드: Ginsenoside Ro

검색결과 34건 처리시간 0.026초

Vasodilator-stimulated phosphoprotein-phosphorylation by ginsenoside Ro inhibits fibrinogen binding to αIIb/β3 in thrombin-induced human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.359-365
    • /
    • 2016
  • Background: Glycoprotein IIb/IIIa (${\alpha}aIIb/{\beta}_3$) is involved in platelet adhesion, and triggers a series of intracellular signaling cascades, leading to platelet shape change, granule secretion, and clot retraction. In this study, we evaluated the effect of ginsenoside Ro (G-Ro) on the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$. Methods: We investigated the effect of G-Ro on regulation of signaling molecules affecting the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$, and its final reaction, clot retraction. Results: We found that G-Ro dose-dependently inhibited thrombin-induced platelet aggregation and attenuated the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$ by phosphorylating cyclic adenosine monophosphate (cAMP)-dependently vasodilator-stimulated phosphoprotein (VASP; $Ser^{157}$). In addition, G-Ro strongly abrogated the clot retraction reflecting the intensification of thrombus. Conclusion: We demonstrate that G-Ro is a beneficial novel compound inhibiting ${\alpha}aIIb/{\beta}_3$-mediated fibrinogen binding, and may prevent platelet aggregation-mediated thrombotic disease.

Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.236-241
    • /
    • 2019
  • Background: Thromboxane A2 ($TXA_2$) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a $Ca^{2+}-antagonistic$ antiplatelet effect, whether it inhibits $Ca^{2+}-dependent$ cytosolic phospholipase $A_2$ ($cPLA_{2{\alpha}}$) activity to prevent the release of arachidonic acid (AA), a $TXA_2$ precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated $TXA_2$ inhibition. Methods: We investigated whether G-Ro attenuates $TXA_2$ production and its associated molecules, such as cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS), $cPLA_{2{\alpha}}$, mitogen-activated protein kinases, and AA. To assay COX-1 and TXAS, we used microsomal fraction of platelets. Results: G-Ro reduced $TXA_2$ production by inhibiting AA release. It acted by decreasing the phosphorylation of $cPLA_{2{\alpha}}$, p38-mitogen-activated protein kinase, and c-Jun N-terminal kinase1, rather than by inhibiting COX-1 and TXAS in thrombin-activated human platelets. Conclusion: G-Ro inhibits AA release to attenuate $TXA_2$ production, which may counteract $TXA_2-associated$ thrombosis.

Ginsenosides from the Roots of Korean Cultivated-Wild Ginseng

  • Yang, Min-Cheol;Seo, Dong-Sang;Hong, Jong-Ki;Hong, Sung-Hyun;Kim, Young-Choong;Lee, Kang-Ro
    • Natural Product Sciences
    • /
    • 제14권3호
    • /
    • pp.171-176
    • /
    • 2008
  • Column chromatographic separation of 70% EtOH extract of the roots of Korean cultivated-wild ginseng led to the isolation of ten ginsenosides (1 - 10). The isolated compounds were identified as ginsenoside $Rg_1$ (1), ginsenoside Re (2), ginsenoside Rc (3), ginsenoside $Rb_1$ (4), ginsenoside $Rb_2$ (5), ginsenoside Rd (6), ginsenoside $Rg_3$ (7), ginsenoside $F_2$ (8), ginsenoside $Rb_3$ (9), and ginsenoside $Rd_2$ (10) by physicochemical and spectroscopic methods. The compounds (1 - 10) were for the first time isolated from the roots of Korean cultivated-wild ginseng.

Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

  • Kim, Sokho;Oh, Myung-Hoon;Kim, Bum-Seok;Kim, Won-Il;Cho, Ho-Seong;Park, Byoung-Yong;Park, Chul;Shin, Gee-Wook;Kwon, Jungkee
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.365-370
    • /
    • 2015
  • Background: The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods: Raw 264.7 cells were pretreated with GRo (up to $200{\mu}M$) for 1 h before treatment with 1 mg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results: GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion: GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1.

Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice

  • Yoo, Yung Choon;Lee, Junglim;Park, Seok Rae;Nam, Ki Yeul;Cho, Young Ho;Choi, Jae Eul
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.80-86
    • /
    • 2013
  • Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 ${\mu}g$/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.

Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis

  • Kim, Dongmin;Han, Jaehong
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.315-322
    • /
    • 2019
  • Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.

Pharmacological Effects of ginseng Saponins on Receptor Stimulation-responses

  • Eiichi Tachikawa;Kenzo Kudo;Kazuho Harada;Takeshi Kashimoto;KatsuroFurumachi;Yoshikazu Miyate;Atsushi Kakizaki;Eiji Takahashi
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.40-46
    • /
    • 1998
  • We investigated the influence of the root of Panax ginseng C. A. Meyer on the secretion of catecholamines from bovine adrenal chromaffin cells, which are used as a model of nervous systems. In two major parts extracted from the ginseng root, the crude saponin fraction, but not the non-saponin fraction, reduced the secretion from the cells, stimulated by acetylcholine (ACh). Ginseng saponins (ginsenosides) are classified into three groups, the panaxadiol, the panaxatriol and the oleanolic acid groups, on the basis of the chemical structures of their saponins. Both the panaxadiol and the panaxatriol saponins, excluding only one oleanolic acid saponin ginsenoside-Ro, generally reduced the ACh-evoked secretion. The inhibitory effects of the panaxatriol were much stronger than those of the panaxadiol. However, ginsenoside-Rg, and -Rh3 in the panaxadiol saponins were the potent inhibitors comparable to the panaxatriol saponins. Ginsenoside-Rg2 in the panaxatriol was the most effective. It is probable that the ginsenoside inhibition of the catecholamine secretion is due to the suppression of the function of the nicotinic ACh receptor-cation channels. On the other hand, ginsenoside-Rg2 did not affect the angiotensin II-, the bradykinin-, the histamine- and the neurotensin- induced catecholamine secretions from the chromaffin cells and the muscarine- and the histamine- induced contraction of the ileum in guinea-pigs. Ginsenoside-Rbl, a panaxadiol saponin, and ginsenoside-Ro had no or only a slight effect on them. On the contrary, ginsenoside-Rg3 not only competitively inhibited the muscarine-induced ileum contraction but also reduced the angiotensin R -, the bradykinin-, the histamine- and the neurotensin-induced catecholamine secretions. Thus, the ginseng root contains active ingredients, namely some ginsensides, which suppress the responses induced by receptor stimulation. The inhibitory effects of ginseng saponins may be one of the action mechanisms for the pharmacological effects of the Panax ginseng root.

  • PDF

Ginsenoside Rb2 Upregulates the Low Density Lipoprotein Receptor Gene Expression through the Activation of the Sterol Regulated Element Binding Protein Maturation in HepG2 Cells

  • Lim, Grewo;Lee, Hyunil;Kim, Eun-Ju;Noh, Yun-Hee;Ro, Youngtae;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • 제29권4호
    • /
    • pp.159-166
    • /
    • 2005
  • Ginsenosides, a group of Panax ginseng saponins, exert the lowering effects of plasma cholesterol levels in animals. We had reported earlier that ginsenoside Rb2 upregulate low-density lipoprotein receptor (LDLR) expression via a mechanism that is dependent of the activation of sterol response element binding protein 2 (SREBP-2) expression. This study was conducted to determine the effects of ginsenoside Rb2 on the expression of the hepatic LDLR expression at cellular levels using HepG2 cells, and to evaluate whether the sterol response element binding protein 1 (SREBP-l) was involved in the regulation of LDLR expression. Incubation of HepG2 cells in serum-free medium supplemented with cholesterol $(10{\mu}g/ml)$ for 8 hours decreased the mRNAs of LDLR mRNA by $12\%$ and SREBP-l mRNA by $35\%$. Ginsenoside Rb2 antagonized the repressive effects of cholesterol and increased both LDLR and SREBP-l mRNA expression to 1.5- and 2-fold, respectively. Furthermore, Western blot and confocal microscopic analyses with SREBP-l polyclonal antibody revealed that ginsenoside Rb2 enhanced the maturation of the SREBP-1 from the inactive precursor form in ER membrane to the active transcription factor form in nucleus. These results suggest that ginsenoside Rb2 upregulates LDLR expression via a mechanism that is dependent of the activation of not only SREBP-2 expression, but also SREBP-1 expression and maturation, and also indicate that the pharmacological value of ginsenoside Rb2 may be distinguished from that of lovastatin which is reported that it upregulate LDLR through SREBP-2 only, not through SREBP-1.

Fusarium solani와 Phytophlhora cactorum이 고려인삼의 사포닌 성분변화에 미치는 영향 (Influences of Fusurium sozani and Phytophthoya cactorum on the Changes in Saponin Components of Korean Ginseng (Panax ginseng C.A. Meyer))

  • 조대휘;오승환
    • Journal of Ginseng Research
    • /
    • 제10권1호
    • /
    • pp.66-75
    • /
    • 1986
  • Fuiarium solani 와 Phytophthora cactorum 이 인삼 사포닌 성분에 어떠한 영향을 미치는가를 알기 위해서 각 첨가배지에서의 균사생육과 접종된 인삼분말의 사포닌 분석실험으로 다음과 같은 결과를 얻었다. Fuiarium solani는 수삼의 물추출물 농도에 따라 생육이 억제되었으며 조사포닌 20ppm 첨가까지 생육이 촉진되었으나 50ppm이상에서는 불규칙적인 생육 억제효과가 있었다. 그리고 nystatin은 농도에 다라 생육을 억제하였다. Phytophthora cactorum은 수삼의 물추출액, 조사포닌의 농동에 따라서 생육은 촉진되었으며 nystatin은 생육에 영향을 미치지 않았다. F. solani 및 P. cactorum 으로 접종된 인삼분말은 ginsenoside Ra, Ro peak가 나타나지 않았으며 F. solani에 의해 PD 계 ginsenoside가 3.0% 증가되고 PT계 ginsenosides는 34.9% 감소되었다. P. cactorum의 경우는 PD 계 ginsenoside가 21.1% 증가, PT계 ginsenosides는 23.5% 감소하였다. 두 균주에 의해 PD, PT계 ginsenoside의 변화가 다르게 나타났지만 PD/PT비는 동일하게 58.4%씩 각각 높아졌다. 인삼의 총 사포닌 함량은 F. solani에 의해 17.8%, P. cactorum에 의해서 2.5%씩 각각 감소하였다.

  • PDF

고콜레스테롤 조건하에 배양된 HepG2에서의 ginsenoside-Rb2에 의한 LDL receptor 억제 완화 기전 (The Mechanism of LDL Receptor Up-regulation by Ginsenoside-Rb2 in HepG2 Cultured under Enriched Cholesterol Condition)

  • 임그리워;이현일;김은주;노영태;노연희;구자현
    • Journal of Ginseng Research
    • /
    • 제28권2호
    • /
    • pp.87-93
    • /
    • 2004
  • 인삼성분 중 ginsenoside-Rb$_2$에 의한 LDL receptor발현 증가의 기전을 HepG$_2$세포에서 관찰하였고 이를 lovastatin과 비교하였다. 콜레스테롤 투여에 의하여 억제된 LDL receptor mRNA발현이 ginsenoside-Rb$_2$에 의하여 다시 증가하였고 이는 lovastatin에 의한 증가 효과보다 뛰어났다. SREBP mRNA의 발현 또한 콜레스테롤 투여에 의하여 억제되나 ginseonside-Rb$_2$에 의하여 발현이 증가하였고 이는 lovastatin에 의한 효과와 비슷하였다. 세포에 투여한 ginsenoside-Rb$_2$의 농도에 비례하여 SREBP-1 mRNA의 발현이 증가하였으며 ginsenoside-Rb$_2$의 대사체인 compound K를 투여한 경우에도 SREBP-1 mRNA가 비슷한 양상으로 혹은 더 많이 발현되었다. 따라서 ginsenoside-Rb$_2$에 의한 LDL receptor의 발현 증가는 SREBP의 발현 증가 때문이라고 설명할 수 있다. 즉 ginsenoside-Rb$_2$에 의한 SREBP 발현 증가는 콜레스테롤 투여에 의하여 억제된 LDL receptor발현을 증가시켜 결과적으로 혈중의 콜레스테롤을 효과적으로 제거하는 것으로 판단된다.