• Title/Summary/Keyword: Ginsenoside Rh2(S)

Search Result 85, Processing Time 0.022 seconds

Conversion of Ginsenoside Rb1 and Taxonomical Characterization of Stenotrophomonas sp. 4KR4 from Ginseng Rhizosphere Soil (인삼 근권 토양에서 분리한 Stenotrophomonas sp. 4KR4의 Ginsenoside Rb1 전환능 및 분류학적 특성)

  • Jeon, In-Hwa;Cho, Geon-Yeong;Han, Song-Ih;Yoo, Sun Kyun;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • We isolated the ${\beta}$-glucosidase producing bacteria (BGB) in ginseng root system (rhizosphere soil, rhizoplane, inside of root). Phylogenetic analysis of the 28 BGB based on the 16S rRNA gene sequences, BGB from rhizosphere soil belong to genus Stenotrophomonas (3 strains), Bacillus (1 strain), and Pseudoxanthomonas (1 strain). BGB isolates from rhizoplane were Stenotrophomonas (16 strains), Streptomyces (1 strain) and Microbacterium (1 strain). BGB from inside of root were categorized into Stenotrophomonas (3 strains) and Lysobacter (2 strains). Especially, Stenotrophomonas comprised the largest portion (approximately 90%) of total isolates and Stenotrophomonas was a dominant group of the ${\beta}$-glucosidase producing bacteria. We selected strain 4KR4, which had high ${\beta}$-glucosidase activity (108.17 unit), could transform ginsenoside Rb1 into Rd, Rg3, and Rh2 ginsenosides. In determining its relationship on the basis of 16S rRNA sequence, 4KR4 strain was most closely related to Stenotrophomonas rhizophila e-$p10^T$ (AJ293463) (99.62%). Therefore, on the basis of these polyphasic taxonomic evidence, the ginsenoside Rb1 converting bacteria 4KR4 was identified as Stenotrophomonas sp. 4KR4 (=KACC 17635).

Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography

  • Park, Hee-Won;In, Gyo;Han, Sung-Tai;Lee, Myoung-Woo;Kim, So-Young;Kim, Kyung-Tack;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.457-467
    • /
    • 2013
  • A quick and simple method for simultaneous determination of the 30 ginsenosides (ginsenoside Ro, Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, 20(S)-Rh1, 20(S)-Rh2, 20(R)-Rh2, F1, F2, F4, Ra1, Rg6, Rh4, Rk3, Rg5, Rk1, Rb3, Rk2, Rh3, compound Y, compound K, and notoginsenoside R1) in Panax ginseng preparations was developed and validated by an ultra performance liquid chromatography photo diode array detector. The separation of the 30 ginsenosides was efficiently undertaken on the Acquity BEH C-18 column with gradient elution with phosphoric acids. Especially the chromatogram of the ginsenoside Ro was dramatically enhanced by adding phosphoric acid. Under optimized conditions, the detection limits were 0.4 to 1.7 mg/L and the calibration curves of the peak areas for the 30 ginsenosides were linear over three orders of magnitude with a correlation coefficients greater than 0.999. The accuracy of the method was tested by a recovery measurement of the spiked samples which yielded good results of 89% to 118%. From these overall results, the proposed method may be helpful in the development and quality of P. ginseng preparations because of its wide range of applications due to the simultaneous analysis of many kinds of ginsenosides.

Quality of Insambob Containing Added Raw and Red Ginseng Extract (수삼과 홍삼액을 첨가하여 취반한 인삼밥의 품질학적 특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1151-1157
    • /
    • 2012
  • This study was conducted to investigate methods of increasing raw ginseng consumption. To accomplish this, Insambob was prepared by adding minced raw ginseng (MRG), ground raw ginseng (GRG) or extracts of red ginseng (RGE). Sensory quality, textural properties, and changes in the ginsenoside and free amino acid composition of the Insambob then were investigated. Insambob containg 50% RGE had the best color, flavor and texture, but that containing 10% GRG had the best taste and overall acceptability. The hardness and adhesiveness were highest for containing 10% GRG and decreased as the amount of ginseng added increased. However, the hardness increased, while the adhesiveness of Insambob containg RGE decreased significantly as the amount added increased. Moreover, the ginsenoside composition changed upon addition of ginseng, with the levels of ginsenoside-Rb1, -Rb2, -Rb3, -Rc, -Re, -Rd, -Rg1, and -Rf decreasing and ginsenoside-Rh2, -Rh1, and -Rg3 newly appearing. Finally, the total free amino acid contents of Insambob increased upon addition of MRG, GRG and RGE.

The Difference of Ginsenoside Compositions According to the Conditions of Extraction and Fractionation of Crude Ginseng Saponins (추출 및 분획조건에 따른 인삼 조사포닌 중 ginsenoside 조성 차이)

  • Shin, Ji-Young;Choi, Eon-Ho;Wee, Jae-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.282-287
    • /
    • 2001
  • This study was carried out to investigate the difference of ginsenoside compositions in crude ginseng saponins prepared by five different methods including three new methods. Two known methods are hot methanol(MeOH) extraction/n-butanol(n-BuOH) fractionation and hot MeOH extraction/Diaion HP-20 adsorption/MeOH elution. Three new methods are hot MeOH extraction/cation AG 50W $absorption/H_2O$ elution/n-BuOH extraction, cool MeOH extraction/Diaion HP-20 adsorption/MeOH elution and direct extraction with ethyl acetate(EtOAc)/n-BuOH. Analysis of ginsenoside composition in the crude saponins by conventional HPLC/RI(Refractive Index) did not show great difference between methods except EtOAc/n-BuOH method. However, HPLC/ELSD (evaporative light scattering detector) employing gradient mobile phase afforded fine resolution of ginsenoside Rf, $Rg_1$ and $Rh_1$, and great difference of ginsenoside compositions between methods. LC/MS revealed that large amount of prosapogenins were produced during the pass through the cation exchange (AG 50W) column being strongly acidic. Six major ginsenosides such as $Rb_1,w;Rb_2,$ Rc, Rd, Re and $Rg_1$, 5 prosapogenins and one chikusetsusaponin were identified by LC/MS. A newly established HPLC method employing ODS column and gradient mobile phase of $KH_2PO_4/CH_3CN$ revealed that malonyl ginsenosides were detected only in the crude saponin obtained from cool MeOH extraction.

  • PDF

Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase

  • Yang, Jianjun;Yuan, Donghong;Xing, Tongchao;Su, Hongli;Zhang, Shengjun;Wen, Jiansheng;Bai, Qiqiang;Dang, Dongmei
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.400-408
    • /
    • 2016
  • Background: Ginsenoside Rh2 (GRh2) is the main bioactive component in American ginseng, a commonly used herb, and its antitumor activity had been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in HCT116 colorectal cancer cells. Methods: We examined the effect of GRh2 on HCT116 cells ex vivo. Next, we performed in vitro binding assay and in vitro kinase assay to search for the target of GRh2. Furthermore, we elucidated the underlying molecular mechanisms for the antitumor effect of GRh2 ex vivo and in vivo. Results: The results of our in vitro studies indicated that GRh2 can directly bind with PBK/TOPK and GRh2 also can directly inhibit PBK/TOPK activity. Ex vivo studies showed that GRh2 significantly induced cell death in HCT116 colorectal cancer cells. Further mechanistic study demonstrated that these compounds inhibited the phosphorylation levels of the extracellular regulated protein kinases 1/2 (ERK1/2) and (H3) in HCT116 colorectal cancer cells. In vivo studies showed GRh2 inhibited the growth of xenograft tumors of HCT116 cells and inhibited the phosphorylation levels of the extracellular regulated protein kinases 1/2 and histone H3. Conclusion: The results indicate that GRh2 exerts promising antitumor effect that is specific to human HCT116 colorectal cancer cells through inhibiting the activity of PBK/TOPK.

Analytical Optimum of Ginsenosides according to the Gradient Elution of Mobile Phase in High Performance Liquid Chromatography (HPLC의 이동상 용매조건에 따른 인삼 Ginsenoside 분석)

  • Park, Ji-Yeong;Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.215-219
    • /
    • 2007
  • This study was conducted to analyze not only for the quality guaranteed of red ginseng but also for the minor ginsenosides. Although several studies have reported to analyze ginseng saponins, those were focused to major saponins, including 6 to 7 ginsenosides. As increase of interest in medicinal effect of ginseng products, anasis of various ginsenosides in both red and white ginseng are strongly demanded. To perform optital condition of 12 ginsenoside analysis, We controlled HPLC conditions, such as the gradient elution of the mobile phase. We found the adequate separation method for 12 ginse-nosides. The optimum condition was as following : H$_2$O/CH$_3$CN ratios were 82/18, 70/30, 55/45 and 50/50, respectively. Sol-vent flow rate was 1.00 ma/min. Column temperature was kept to 35$^{\circ}$C. UV detector was set to 203 nm.

The Chemical and 1,1-Diphenyl-2-Picrylhydrazyl Radical Scavenging Activity Changes of Ginsenosides Rb1 and Rg1 by Maillard Reaction

  • Yamabe, Noriko;Lee, Jin-Gyun;Lee, Yong-Jae;Park, Chan-Hum;Kim, Hyun-Young;Park, Jeong-Hill;Yokozawa, Takako;Kang, Ki-Sung
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.60-68
    • /
    • 2011
  • The chemical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity changes of ginsenoside $Rb_1$-glycine and ginsenoside $Rg_1$-glycine mixtures by Maillard reaction were investigated to identify the role of Maillard reaction in the increased antioxidant activity of ginseng by heat-processing. The DPPH radical scavenging activity of $Rg_1$-glycine mixture was more strongly increased by heat-processing than that of $Rb_1$-glycine mixture. From the analyses of ginsenosides, $Rb_1$ was gradually changed into 20(S)-$Rg_3$, 20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ by heat-processing. $Rg_1$ was gradually changed into 20(S)-$Rh_1$, 20(R)-$Rh_1$, $Rk_3$ and $Rh_4$ by heat-processing. However, the generation of these less-polar ginsenosides was not related to the increased DPPH radical scavenging activity of $Rb_1$-glycine and $Rg_1$-glycine mixtures because their DPPH radical scavenging activities were already significantly increased when dried at $50^{\circ}C$, which temperature induce no structural changes of ginsenosides. In the comparison of browning compound levels of $Rg_1$-glycine and $Rb_1$-glycine mixtures, the extents of Maillard reaction were positively correlated with their increased free radical scavenging activities. Based on the chemical and DPPH radical scavenging activity changes of $Rg_1$-glycine and $Rb_1$-glycine mixtures by heat-processing, we clearly identified that the increased free radical scavenging activity of ginsenoside is mediated by the Maillard reaction between sugar moiety of ginsenoside and amino acid.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials

  • Kim, Il-Woung;Sun, Won Suk;Yun, Bong-Sik;Kim, Na-Ri;Min, Dongsun;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.124-134
    • /
    • 2013
  • The authentication of the physico-chemical properties of ginsenosides reference materials as well as qualitative and quantitative batch analytical data based on validated analytical procedures is a prerequisite for certifying good manufacturing practice (GMP). Ginsenoside Rb1 and Rg1, representing protopanaxadiol and protopanaxatriol ginsenosides, respectively, are accepted as marker substances in quality control standards worldwide. However, the current analytical methods for these two compounds recommended by Korean, Chinese, European, and Japanese pharmacopoeia do not apply to red ginseng preparations, particularly the extract, because of the relatively low content of the two agents in red ginseng compared to white ginseng. In manufacturing fresh ginseng into red ginseng products, ginseng roots are exposed to a high temperature for many hours, and the naturally occurring ginsenoside Rb1 and Rg1 are converted to artifact ginsenosides such as Rg3, Rg5, Rh1, and Rh2 during the heating process. The analysis of ginsenosides in commercially available ginseng products in Korea led us to propose the inclusion of the (20S)- and (20R)-ginsenoside Rg3, including ginsenoside Rb1 and Rg1, as additional reference materials for ginseng preparations. (20S)- and (20R)-ginsenoside Rg3 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of those isolated ginsenosides was achieved according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantification, and mass balance tests. The isolated ginsenosides showed 100% purity when determined by the three HPLC systems. Also, the water content was found to be 0.534% for (20S)-Rg3 and 0.920% for (20R)-Rg3, meaning that the net mass balances for (20S)-Rg3 and (20R)-Rg3 were 99.466% and 99.080%, respectively. From these results, we could assess and propose a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 as standard reference materials for GMP-based quality control.

20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway

  • Xia, Ting;Zhang, Jin;Zhou, Chuanxin;Li, Yu;Duan, Wenhui;Zhang, Bo;Wang, Min;Fang, Jianpei
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.725-737
    • /
    • 2020
  • Background: T-cell acute lymphoblastic leukemia (T-ALL) is a kind of aggressive hematological cancer, and the PI3K/Akt/mTOR signaling pathway is activated in most patients with T-ALL and responsible for poor prognosis. 20(S)-Ginsenoside Rh2 (20(S)-GRh2) is a major active compound extracted from ginseng, which exhibits anti-cancer effects. However, the underlying anticancer mechanisms of 20(S)-GRh2 targeting the PI3K/Akt/mTOR pathway in T-ALL have not been explored. Methods: Cell growth and cell cycle were determined to investigate the effect of 20(S)-GRh2 on ALL cells. PI3K/Akt/mTOR pathway-related proteins were detected in 20(S)-GRh2-treated Jurkat cells by immunoblotting. Antitumor effect of 20(S)-GRh2 against T-ALL was investigated in xenograft mice. The mechanisms of 20(S)-GRh2 against T-ALL were examined by cell proliferation, apoptosis, and autophagy. Results: In the present study, the results showed that 20(S)-GRh2 decreased cell growth and arrested cell cycle at the G1 phase in ALL cells. 20(S)-GRh2 induced apoptosis through enhancing reactive oxygen species generation and upregulating apoptosis-related proteins. 20(S)-GRh2 significantly elevated the levels of pEGFP-LC3 and autophagy-related proteins in Jurkat cells. Furthermore, the PI3K/Akt/mTOR signaling pathway was effectively blocked by 20(S)-GRh2. 20(S)-GRh2 suppressed cell proliferation and promoted apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in Jurkat cells. Finally, 20(S)-GRh2 alleviated symptoms of leukemia and reduced the number of white blood cells and CD3 staining in the spleen of xenograft mice, indicating antitumor effects against T-ALL in vivo. Conclusion: These findings indicate that 20(S)-GRh2 exhibits beneficial effects against T-ALL through the PI3K/Akt/mTOR pathway and could be a natural product of novel target for T-ALL therapy.