• Title/Summary/Keyword: Ginsenoside Rh2(S)

검색결과 85건 처리시간 0.021초

HL-60 세포에 대한 Triterpent Acids와 Ginsenosides의 분화효과 (Effects of Triterpence Acids and Ginsenosides in Differentiation of HL-60 Promyelocytic Leckemia Cells)

  • 강창모;이호영;김신일;김규원
    • 생명과학회지
    • /
    • 제8권2호
    • /
    • pp.162-166
    • /
    • 1998
  • 전 골수성 백혈병 세초인 HL-60 세포를 model로 하여, 민간요법으로 사용되어져 부작용이 극히 적은 거승로 알려진 고려인삼의 구성 성분 중 주요성분이 ginseng (Panzx ginseng C.A. Meyer) saponin 및 ginsenoside Rh1, Rh2, Rh3, 비파 (Eriobotrya japonica L.) 잎의 성분들 중에서 항발암 및 항암성분으로 알려진 ursolic acid 및 oleanolic acid, 웅담중의 중요성분 성분인 lithocholoc acid 드잉 분화능력이 있는 지를 조사하고자 본 실험을 수행아였다. Retinoic acid를 처리한 결과 타 연구자들의 연구결과들처럼 높은 분화력을 관찰할 수 있었으며, dbcAMP 단독 처리군에서도 높은 분화효과를 나타냈었다. Dexamethasone 처리군에서는 분화효과를 거의 관찰할 수 없었으나,dexamethansone과 구조적으로 유사한 ursolic acid와 oleanolic acid는 보다 높은 분화력을 보였고 웅담성분의 중요성분인 lirhocholic acid는 높은 분화력을 나타냈었다. Ginseng saponin은 0.00375% (w/v)에서 20% 이상의 분화력을 보였으며, Ginsenoside Rh2와 Rh3는 높은 분화력을 나타냈다.

  • PDF

홍삼 사포닌의 항산화활성 성분 Screening (Screening of Antioxidative Components from Red Ginseng Saponin)

  • 김정선;김규원
    • Journal of Ginseng Research
    • /
    • 제20권2호
    • /
    • pp.173-178
    • /
    • 1996
  • Aerobic cells are normally protected from the damage of free radicals by antioxidative on , zymes such as superoxide dismutase (SOD), catalase, glutathione (GSH) peroxidase, GSH S- transferase and GSH reductase which scavenge free radicals as well as nonenzymatic antioxidants such as ceruloplasmin, albumin and nonprotein-SH including GSH. The effects of each component (ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re, $Rb_1$, Rf, $Rh_1$ and $Rh_2$) of red ginseng on the antioxidative enzyme activities were investigated in the liver in order to screen antioxidative components of red ginseng. Ginsenoside $Rb_1$ and Rc showed a tendency to increase GSH peroxidase activity, while ginsenoside Rc significantly decreased Cu,Zn-SOD activity. Especially, ginsenoside $Rh_2$ significantly increased catalase activity. These results suggest that ginsenoside $Rh_2$ is an important active component among total saponins of red ginseng.

  • PDF

Antiviral activity of 20(R)-ginsenoside Rh2 against murine gammaherpesvirus

  • Kang, Soowon;Im, Kyungtaek;Kim, Geon;Min, Hyeyoung
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.496-502
    • /
    • 2017
  • Background: Ginsenosides are the major components of Panax ginseng Meyer, an herbal medicine used for the treatment of various diseases. Different ginsenosides contribute to the biological properties of ginseng, such as antimicrobial, anticancer, and immunomodulatory properties. In this study, we investigated the antiviral effects of 15 ginsenosides and compound K on gammaherpesvirus. Methods: The antiviral activity of ginsenosides was examined using the plaque-forming assay and by analyzing the expression of the lytic gene. Results: 20(R)-Ginsenoside Rh2 inhibited the replication and proliferation of murine gammaherpesvirus 68 (MHV-68), and its half-maximal inhibitory concentration ($IC_{50} $) against MHV-68 was estimated to be $2.77{\mu}M$. In addition, 20(R)-ginsenoside Rh2 inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lytic replication of human gammaherpesvirus in the Kaposi's sarcoma-associated herpesvirus (KSHV)-positive cell line BC3. Conclusion: Our results indicate that 20(R)-ginsenoside Rh2 can inhibit the replication of mouse and human gammaherpesviruses, and thus, has the potential to treat gammaherpesvirus infection.

Ginsenoside Rh2 reduces m6A RNA methylation in cancer via the KIF26B-SRF positive feedback loop

  • Hu, Chunmei;Yang, Linhan;Wang, Yi;Zhou, Shijie;Luo, Jing;Gu, Yi
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.734-743
    • /
    • 2021
  • Background: The underlying mechanisms of the potential tumor-suppressive effects of ginsenoside Rh2 are complex. N6-methyladenosine (m6A) RNA methylation is usually dysregulated in cancer. This study explored the regulatory effect of ginsenoside Rh2 on m6A RNA methylation in cancer. Methods: m6A RNA quantification and gene-specific m6A RIP-qPCR assays were applied to assess total and gene-specific m6A RNA levels. Co-immunoprecipitation, fractionation western blotting, and immunofluorescence staining were performed to detect protein interactions and distribution. QRT-PCR, dual-luciferase, and ChIP-qPCR assays were conducted to check the transcriptional regulation. Results: Ginsenoside Rh2 reduces m6A RNA methylation and KIF26B expression in a dose-dependent manner in some cancers. KIF26B interacts with ZC3H13 and CBLL1 in the cytoplasm of cancer cells and enhances their nuclear distribution. KIF26B inhibition reduces m6A RNA methylation level in cancer cells. SRF bound to the KIF26B promoter and activated its transcription. SRF mRNA m6A abundance significantly decreased upon KIF26B silencing. SRF knockdown suppressed cancer cell proliferation and growth both in vitro and in vivo, the effect of which was partly rescued by KIF26B overexpression. Conclusion: ginsenoside Rh2 reduces m6A RNA methylation via downregulating KIF26B expression in some cancer cells. KIF26B elevates m6A RNA methylation via enhancing ZC3H13/CBLL1 nuclear localization. KIF26B-SRF forms a positive feedback loop facilitating tumor growth.

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways

  • Kim, Do-Yeon;Jung, Mi-Song;Park, Young-Guk;Yuan, Hai Dan;Quan, Hai Yan;Chung, Sung-Hyun
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.659-664
    • /
    • 2011
  • As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).

백삼 및 홍삼 농축액의 사포닌 분석 (Analysis of Ginsenosides of White and Red Ginseng Concentrates)

  • 고성권;이충렬;최용의;임병옥;성종환;윤광로
    • 한국식품과학회지
    • /
    • 제35권3호
    • /
    • pp.536-539
    • /
    • 2003
  • 백삼 가공품과 홍삼 가공품의 사포닌 분포 내용과 함량을 비교하기 위하여 시판되고 있는 백삼 농축액(WGC)과 홍삼 농축액(RGC)을 각각 1종 선정하여 조 사포닌의 함량과 개별 ginsenoside의 함량분포를 조사하였다. Shibata의 방법과 우리나라 식품공전에 따라 측정한 조 사포닌의 양은 WGC가 각각 10.65와 21.77%이었으며 RGC는 5.80와 10.94%이였고, HPLC에 의한 총 사포닌의 양은 WGC가 7.40와 10.64%, RGC는 3.31와 3.13%로서 백삼 농축액의 사포닌 함량이 홍삼 농축액의 경우 보다 전반적으로 높았다. HPLC로 분석한 인삼 사포닌, ginsenoside $Rb_1,\;Rb_2,\;Rc,\;Rd,\;Re,\;Rf,\;Rg_1,\;20(S)\;Rg_3,\;20(R)Rg_3,\;20(S)\;Rh_1$ 그리고 $20(R)\;Rh_1$ 이었으며 대부분 홍삼농축액 보다는 백삼농축액의 함량이 높았으며, 특히 ginsenoside $Rb_1,\;Rg_1$ 그리고 $Rb_2$은 백삼 농축액에 3배 이상 더 함유되어 있었다. 또한 protopanaxadiol group과 protopanaxatriol group의 비율(PD/PT)에 있어서는 농축액간의 차이는 크지 않았다. 홍삼의 특유 사포닌으로 알려진 20(S)- 및 20(R)-ginsenoside $Rg_3$가 WGC와 RGC에 비슷하게 분포하는 것으로 확인되었다. 20(S)-ginsenoside $Rg_3$의 조 사포닌 조제법에 따라 RGC에서 0.48과 0.47% WGC에 0.40와 0.53%, 20(R)-ginsenoside $Rg_3$도 RGC에 0.10과 0.11%, WGC에 0.14와 0.22%이었다.

The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity

  • Lin, Yingjia;Li, Yang;Song, Zhi-Guang;Zhu, Hongyan;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.330-338
    • /
    • 2017
  • Background: Ginsenoside Rh2 (G-Rh2) is a ginseng saponin that is widely investigated because of its remarkable antitumor activity. However, the molecular mechanism by which (20S) G-Rh2 triggers its functions and how target animals avoid its cytotoxic action remains largely unknown. Methods: Phage display was used to screen the human targets of (20S) G-Rh2. Fluorescence spectroscopy and UV-visible absorption spectroscopy were used to confirm the interaction of candidate target proteins and (20S) G-Rh2. Molecular docking was utilized to calculate the estimated free energy of binding and to structurally visualize their interactions. MTT assay and immunoblotting were used to assess whether human serum albumin (HSA), bovine serum albumin (BSA), and bovine serum can reduce the cytotoxic activity of (20S) G-Rh2 in HepG2 cells. Results: In phage display, (20S) G-Rh2-beads and (20R) G-Rh2-beads were combined with numerous kinds of phages, and a total of 111 different human complementary DNAs (cDNA) were identified, including HSA which had the highest rate. The binding constant and number of binding site in the interaction between (20S)-Rh2 and HSA were $3.5{\times}10^5M^{-1}$ and 1, and those in the interaction between (20S) G-Rh2 and BSA were $1.4{\times}10^5M^{-1}$ and 1. The quenching mechanism is static quenching. HSA, BSA and bovine serum significantly reduced the proapoptotic effect of (20S) G-Rh2. Conclusion: HSA and BSA interact with (20S) G-Rh2. Serum inhibited the activity of (20S) G-Rh2 mainly due to the interaction between (20S) G-Rh2 and serum albumin (SA). This study proposes that HSA may enhance (20S) G-Rh2 water solubility, and thus might be used as nanoparticles in the (20S) G-Rh2 delivery process.

프로바이틱스 Lactobacillus helveticus와 Pediococcus pentosaceus의 조합에 의한 진세노사이드의 발효적 형질전환 (Fermentative transformation of ginsenosides by a combination of probiotic Lactobacillus helveticus and Pediococcus pentosaceus)

  • ;;김진만;양승환
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.436-441
    • /
    • 2018
  • 인삼은 우수한 약리 활성 작용을 보이는 전통적인 약초이다. 본 연구에는 프로바이오틱스 Lactobacillus helveticus KII13과 Pediococcus pentosaceus KID7 균주를 진세노사이드(ginsenoside) 함량을 증가시키기 위해 조 인삼 추출물을 발효시켜 진세노사이드를 형질전환 시키는데 사용되었다. 발효삼 추출물의 TLC(Thin-layer chromatography) 분석 결과, 5일간의 발효 후 주요 사포닌인 진세노사이드 Rg3, Rh1 및 Rh2로 변환되는 것으로 나타났다. HPLC 분석을 수행하여 주요 및 미량 진 세노사이드를 정량화하였다. 3일째에는 Rg3가 나타나고, 5일째에는 Rh2 및 Rh1이 나타난다. L. helveticus KII13과 P. pentosaceus KID7의 공동 배양은 주요 진세노사이드(Rb1과 Rg1)를 미량 진세노사이드(Rg3, Rh2, Rh1)로 전환시키는 것을 학인하였다.