• 제목/요약/키워드: Ginsenoside Rg4

검색결과 336건 처리시간 0.026초

The Changes of Ginsenoside Patterns in Red Ginseng Processed by Organic Acid Impregnation Pretreatment

  • Kim, Mi-Hyun;Lee, Young-Chul;Choi, Sang-Yoon;Cho, Chang-Won;Rho, Jeong-Hae;Lee, Kwang-Won
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.497-503
    • /
    • 2011
  • In order to enhance bioactive functionalities of ginseng, an acid impregnation processing was applied as a pre-treatment in producing red ginseng. Acid impregnation studies were conducted, and acids (ascorbic, malic, and citric acid) were selected. The optimal concentration of each acid was investigated in this study in terms of ginsenoside contents. The most concerned ginsenoside, $Rg_3$ was increased by ascorbic, malic, and citric acid pre-treated red ginseng up to 1 M acid concentration. In the case of ascorbic acid pre-treated red ginseng, $Rg_2$ concentration was increased depending on acid concentrations. Citric acid pre-treatment enhanced $Rg_2$, $Rg_3$, and $Rh_1+Rh_2$ formation in red ginseng. Therefore, ginsenoside patterns in red ginseng could be changed by acid impregnation pre-treatment depending on acid concentration and acid types. This research is expected to contribute to the development of the ginseng industry via new red ginseng products with selective and intensified functionality.

포도주스 침지 제조 흑삼의 Ginsenoside Rg3 함량 변화와 Acetylcholinesterase 억제효과 (Change of Ginsenoside Rg3 and Acetylcholinesterase Inhibition of Black Ginseng Manufactured by Grape Juice Soaking)

  • 이미라;윤범식;손백신;류뢰;장동량;왕춘년;왕젠;이선영;모은경;성창근
    • Journal of Ginseng Research
    • /
    • 제33권4호
    • /
    • pp.349-354
    • /
    • 2009
  • 흑삼의 속성제조와 ginsenoside $Rg_3$ 함량을 극대화하고자 흑삼 제조시 포도주스에 24시간 침지한 후 $120^{\circ}C$에서 30분간 3회 반복 증숙하여 흑삼을 제조한 후 HPLC 방법을 이용하여 ginsenosides를 분석하였다. 포도주스에 침지하여 제조한 흑삼의 ginsenoside $Rg_3$ 함량은 10.91 mg/g으로 구증구포 방법으로 제조한 흑삼보다 약 2배 가량 함량이 증가되었다. 총 사포닌 함량은 14.97 mg/g으로 전통적인 구증구포 방식으로 제조한 흑삼 (12.79 mg)보다 그 함량이 높았다. 흑삼의 단회투여 (200 mg/kg, p.o.)에 의한 뇌조직 AChE 활성은 투여 24시간 후에 유의적으로 억제되는 효과를 보여주었다. 따라서 본 연구에 적용한 새로운 제조방법은 ginsenoside $Rg_3$를 강화하는 흑삼의 속성제조에 효과적인 방법으로 판단된다. 또한, AChE 활성억제를 통해 흑삼이 뇌기능 개선에 대한 잠재적인 효능을 가지고 있는 것으로 사료된다.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

  • Park, Boyeon;Hwang, Hyelyeon;Lee, Jina;Sohn, Sung-Oh;Lee, Se Hee;Jung, Min Young;Lim, Hyeong In;Park, Hae Woong;Lee, Jong-Hee
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.524-530
    • /
    • 2017
  • Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results: L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ${\sim}2.6{\mu}g/mL$ to $6.5{\mu}g/mL$ and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

Protective Effect of Fermented Red Ginseng on a Transient Focal Ischemic Rats

  • Bae, Eun-Ah;Hyun, Yang-Jin;Choo, Min-Kyung;Oh, Jin-Kyung;Ryu, Jong-Hoon;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • 제27권11호
    • /
    • pp.1136-1140
    • /
    • 2004
  • Red ginseng and fermented red ginseng were prepared, and their composition of ginsenosides and antiischemic effect were investigated. When ginseng was steamed at 98-$100{\circ}C$ for 4h and dried for 5h at $60{\circ}C$, and extracted with alcohol, its main components were ginsenoside $Rg_3$ > ginsenoside $Rg_1$> ginsenoside $Rg_2$. When the ginseng was suspended in water and fermented for 5 days by previously cultured Bifidobacterium H-1 and freeze-dried (fermented red ginseng), its main components were compound K > ginsenoside $Rg_3{\geq}$ ginsenoside $Rg_2$. Orally administered red ginseng extract did not protect ischemia-reperfusion brain injury. However, fermented red ginseng significantly protected ischemica-reperfusion brain injury. These results suggest that ginsenoside Rh2 and compound K, which was found to be at a higher content in fermented red ginseng than red ginseng, may improve ischemic brain injury.

HPLC를 이용한 인삼, 홍삼, 산양산삼 및 홍산삼의 성분 비교 분석 (Component Analysis of Cultivated Ginseng, Red Ginseng, Cultivated Wild Ginseng, and Red Wild Ginseng Using HPLC Method)

  • 이장호;권기록;차배천
    • 대한약침학회지
    • /
    • 제11권2호
    • /
    • pp.87-95
    • /
    • 2008
  • Objectives The aim of this experiment is to provide an differentiation of ginseng, red ginseng, cultivated wild ginseng(CWG), and red wild ginseng(RWG) through component analysis using HPLC(High Performance Liquid Chromatography, hereafter HPLC). Methods Comparative analyses of ginsenoside $Rg_3$, ginsenoside $Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ of various ginsengs were conducted using HPLC. Results 1. CWG was relatively heat-resistant and showed slow change in color during the process of steaming and drying, compared to cultivated ginseng. 2. Ginsenoside $Rg_3$ was not detected in cultivated ginseng and CWG, whereas it was high in red ginseng and RWG. Ginsenoside $Rg_3$ was more generated in red ginseng than in RWG. 3. Ginsenoside $Rh_2$ appreared during steaming and drying of cultivated ginseng, whereas it was more increased during steaming and drying of CWG. 4. Ginsenoside $Rg_1$ content was more increased during steaming and drying of cultivated ginseng, whereas it was more decreased during steaming and drying of CWG. 5. Ginsenoside $Rb_1$ content was increased about 500% during steaming and drying of cultivated ginseng, whereas it was increased about 30% during steaming and drying of CWG, indicating that ginsenoside $Rb_1$ was more generated in red ginseng than in RWG. 6. Ginsenoside $Rg_3$ content was higher, whereas ginsenoside $Rg_1$ content was lower in 11th RWG than in 9th RWG, indicating that ginsenoside $Rg_3$ content was increased and $Rg_1$ content was decreased as steaming and drying continued to proceed. Ginsenoside $Rh_2$ and $Rb_1$ contents began to be increased, followed by decreased after 9th steaming and drying process. Conclusions Above experiment data can be an important indicator for the dentification of ginseng, red ginseng, CWG, and RWG. And the following studies will be need for making good product using CWG.

Ginsenoside Rg1의 NMR 데이터 동정 (Identification of NMR Data for ginsenoside Rg1)

  • 이대영;조진경;이민경;이재웅;박희정;이윤형;양덕춘;백남인
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.291-299
    • /
    • 2008
  • 수삼으로부터 용매추출, 용매분획 및 silica gel column chromatography를 반복하여 ginsenoside $Rg_1$을 분리하였다. Ginsenoside $Rg_1$의 결정특성, 녹는점, 비선광도, IR 데이터, FAB/MS 데이터, TLC에서의 Rf 값, HPLC에서의 r.t. 및 NMR 데이터를 표준화한 조건으로 측정하여 문헌 값과 비교 고찰하였다. 특히 ginsenoside $Rg_1$$^{1}H-$$^{13}C$-NMR 데이터를 HSQC 및 HMBC와 같은 2D-NMR 실험을 통하여 정확하게 동정하였다.

Ginsenoside Rg3이 Lipopolysaccharide에 의한 생쥐 뇌조직의 Cyclooxygenase-2 발현에 미치는 영향 (Effect of Ginsenoside Rg3 on COX-2 Expression in Brain Tissue of Lipopolysaccharide-Treated Mice)

  • 최원익;조용덕;이준석;신정원;김성준;손낙원
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.131-137
    • /
    • 2012
  • Objectives : Cyclooxygenase (COX) plays a central role in the inflammatory cascade by converting arachidonic acid into prostaglandin. COX-2 is typically induced by inflammatory stimuli in the majority of tissues, it is responsible for propagating the inflammatory response and thus, considered as the best target for anti-inflammatory drugs. The present study investigated the modulatory effect of ginsenoside Rg3, a principle active ingredient in Panax ginseng, on COX-2 expression in the brain tissue induced by systemic lipopolysaccharide (LPS) treatment in C57BL/6 mice. Methods : Because systemic LPS treatment induces COX-2 expression immediately in the brain, ginsenoside Rg3 was treated orally with doses of 10, 20, and 30 mg/kg at 1 hour before the LPS (3 mg/kg, i.p.) injection. At 4 hours after the LPS injection, COX-2 mRNA was measured by real-time polymerase chain reaction method, COX-2 protein levels were measured by Western blotting. In addition, COX-2 expressions in brain tissue were observed with immunohistochemistry and double immunofluoresence labeling. Results : Ginsenoside Rg3 (20 and 30 mg/kg) significantly attenuates up-regulation of COX-2 mRNA and protein expression in brain tissue at 4 hours after the LPS injection. Moreover, ginsenoside Rg3 (20 mg/kg) significantly reduced the number of COX-2 positive neurons in the cerebral cortex and amygdala. Conclusion : These results indicate that ginsenoside Rg3 plays a modulatory role in neuroinflammation through the inhibition of COX-2 expression in the brain and suggest that ginsenoside Rg3 and ginseng may be effective on neurodegenerative diseases caused by neuroinflammation.

홍삼가공품의 Ginsenoside 함량 규격기준 개선방안 연구 (A Study on the Amendment Scheme of Ginsenoside Content Standard Regulation for Red Ginseng Products in Korea)

  • 김호진;곽인애;김현정;안종성;손영배
    • 한국식품위생안전성학회지
    • /
    • 제28권1호
    • /
    • pp.24-30
    • /
    • 2013
  • Red ginseng is a widely used dietary supplement and medicinal herb, and there are so many forms of ginseng products including tea, extract, capsule and jelly. The purpose of the present study was to propose some amendments on ginsenoside content of red ginseng products in Korea. For this purpose, we analyzed red ginseng products for simultaneous determination of 26 ginsenosides by ultra performance liquid chromatography with diode array detector. Some developmental aspects of Korea's ginsenoside content standard regulations for red ginseng products are needed to be examined as follows : Firstly, we proposed that four ginsenosides ($Rb_1$, $Rg_1$, Rf and $Rg_3$) would be detected in red ginseng products. Secondly, in case of red ginseng extracts, the sum of $Rb_1$, $Rg_1$ and $Rg_3$ would be 4.0 mg/g. The two proposals are helpful to comprehensive evaluation of quality of red ginseng products. In conclusion, the scientific studies on amendment scheme of ginsenoside content standard regulation of red ginseng product are very important to fortify quality control.

Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis

  • Kim, Dongmin;Han, Jaehong
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.315-322
    • /
    • 2019
  • Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.