• Title/Summary/Keyword: Ginseng saponin compounds

Search Result 68, Processing Time 0.045 seconds

Content and Composition of Saponin Compounds of Panax Species (Panax(인삼)속 식물의 사포닌화합물 함량 및 조성)

  • 고성룡;최강주
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.254-259
    • /
    • 1995
  • The content and composition of saponin compounds of Panax species were analyzed according to their species, region and processing type of red and white ginseng. The species employed were Korean-, Chinese-, Japanese red ginsengs, and Korean white ginseng of Panax ginseng, American- and Canadian ginsengs of Panax quinquefolium, and Panax notoinseng. Twelve main saponin components in the ginseng were identified and quantified using TLC and HPLC. All three species had remarkably different content and composition. However, within each species they were similar. Twelve major ginsenosides were determined in P. ginseng, eight in p. quinquefolium, and six in P. notoginseng. Of the components of P ginseng Rf, $Rh_1$, $Rh_2$ and Ra were not detected in P quinquefolium, and $Rb_2$, Rc, Rf, $Rh_2$, Ra and Ro not detected in P. notoinseam. Crude saponin content and protopanaxadiol/protopanaxatriol saponin ratio were compared. They were 4.81~5.24% and 1.27~ 1.45 in p. ginsengs, 7.01~7.25% and 2.12~ 2.15 in p. quinquefolium, 9.80% and 0.99 in P. notoineng. The prosapogenin and sapogenin content were different among the Panax species.

  • PDF

Relationship of Saponin and Non-saponin for the Quality of Ginseng (인삼의 품질과 약리활성 물질과의 상관성)

  • Nam, Gi-Yeol;Go, Seong-Ryong;Choe, Gang-Ju
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.274-283
    • /
    • 1998
  • It has generally been accepted that quality of ginseng should be determined not by the content of a single component but by composition and balance of total active principles. However, there still can be an exception with a product in which a given ginsenoside is used for the treatment of a specific disease. Although ginsenosides have been regarded to be major active components of ginseng and employed as index components for the quality control, it does not consistent with the traditional concept on ginseng quality creterion; main root has been more highly appreciated than the lateral or fine root. Content of ginsenosides in the lateral or fine root is much higher than that in main root. However, the ratio of protopanaxadiol (PD) and protopanaxatriol (PT) saponins existing in various part of ginseng root is greatly different. The ratio of PD/PT saponins in main root is well balanced but the thinner the root is the higher the ratio. Thus far, a total of 34 different kinds of ginsenosides have been isolated from Korean (red) ginseng, and their pharmacological activities were elucidated partly. Interestingly, different ginsenoside shows similar or contrary effects to each other in biological systems, thus indicating the significance of absolute content of single ginsenoside as well as compositional patterns of each ginsenoside. Therefore, pharmacological activities of ginseng should be determined as a wholly concept. In these regards, standardization of ginseng material (fresh ginseng root) should be preceded to the standardization of ginseng products because ginsenoside content and non-saponin active principles such as polysaccharides and nitrogen (N)-containing compound including proteins are significantly different from part to part of the root. In other words, the main root contains less ginsenosides than other lateral or fine roots. Contents of polysaccharides and N-containing compound in main root is higher. However, the quality control of ginseng products focused on non-saponin compounds has limitation in applying to the analytical method, because of the difficult chemical analysis of these compounds. Content of ginsenosides, and ratios of PD/PT and ginsenoside Rb,/Rg, are inversely proportional to the diameter of ginseng root. Therefore, these can be served as the chemical parameters for the indirect method of evaluating from what part of the root does the material originate. Furthermore, contents of polysaccharides and N-containing compounds show inverse relationship to saponin content. Therefore, it seems that index for analytical chemistry of saponin can be applied to the indirect method of evaluating not only saponin but also non-saponin compounds of ginseng. From these viewpoints, it is strongly recommended that quality of ginseng or ginseng products be judged not only by the absolute content of given ginsenoside but also by varieties and compositional balance of ginsenosides, including contents of non-saponin active principles.

  • PDF

Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells

  • Ji-Sun Lee;Ho-Young Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.266-275
    • /
    • 2024
  • Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.

An Isolation of Crude Saponin from Red-Ginseng Efflux by Diaion HP-20 Resin Adsorption Method (홍삼유출액으로부터 Diaion HP-20 수지 흡착법에 의한 조사포닌의 분리)

  • 곽이성;경종수;김시관;위재준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • This study was carried out to isolate saponin compounds from red-ginseng efflux, which was produced during the industrial processing of red-ginseng from fresh ginseng. We isolated crude saponin from the efflux extract (moisture content 35.0%) by using Diaion HP-20 adsorption method. Non-saponin fraction, which was adsorbed on Diaion HP-20 resin, was removed by eluating with $H_{2}O$ and 25% spirit. Then crude saponin was eluated with 95% spirit, continuously. Saponin in the eluated fractions was confirmed by TLC analysis. Crude saponin isolated from red ginseng efflux extract contained 12.10% of saponin. whereas those of white ginseng and red-ginseng were 3.30 and 3.39%, respectively. Ginsenoside contents showed the highest contents kin crude saponin from red ginseng efflux extract. Expacilly, the ginsenoside-$Rb_{1}$ and Re showed the highest contents in red-ginseng efflux extract when compared with those of white ginseng and red ginseng crude saponins. And the other ginsenosides except ginsenoside-$Rb_{1}$ and -Re also showed the highest contents in red ginseng efflux extract. However, the ratio of PD saponin (Panaxadiol saponin: $Rb_{1}+Rb_{2}$+Rc+Rd) to PT saponin (panaxatriol: $Re+Rg_{1}$) showed almost the same level when compared with those of ginseng saponin fractions. Ratio of PD/PT from red ginseng efflux extract was 1.99. Ratios of PD/PT from white ginseng and red ginseng were 1.85 and 1.84, respectively. Saponin purity, which was calculated by ratio percent of total ginsenoside to curde saponin content, was 45.90%. In case of white ginseng and red ginseng, the purities were 35.50 and 36.00%, respectively. However, by PHLC analysis, we confirmed that crude saponin isolated from red ginsengs. It suggested that crude saponin isolated from red ginseng ellux also would be useful component as ginseng saponins.

  • PDF

Study on of Extraction Methods of Saponin in Ginseng Products (인삼제품의 Saponin 추출방법에 관한 연구)

  • 손현주;장진규
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 1984
  • In order to shorten the extraction time of saponin in ginseng products, election with Extrelut column and phase-separation methods were compared. The results obtained are as follows. 1. Saponin of ginseng products was extracted completely within 3 hours by election method with Extrelut column, and the rate of removing glucose by the column was increased with increasing glucose content in ginseng products. 2. Stirring method was superior to refluxing method for removing sugars from ginseng products, and removing rate was deceased in the order of lactose, sucrose and glucose. 3. Extraction rate of ginsenoside from ginseng extracts by the elution method was nearly same as that of phase-separation method; however, the former was much higher than the latter in the case of ginseng teas. Therefore, the elution by Extrelut column is to be improper for extraction of saponin in ginseng tea which contains much sugar. It was necessary to remove lipophilic compounds for extraction of saponin from ginseng extracts by elution with Extrelut column.

  • PDF

Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng

  • Hyun, Sun Hee;Kim, Sung Won;Seo, Hwi Won;Youn, Soo Hyun;Kyung, Jong Soo;Lee, Yong Yook;In, Gyo;Park, Chae-Kyu;Han, Chang-Kyun
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.527-537
    • /
    • 2020
  • Panax ginseng, a medicinal plant, has been used as a blood-nourishing tonic for thousands of years in Asia, including Korea and China. P. ginseng exhibits adaptogen activity that maintains homeostasis by restoring general biological functions and non-specifically enhancing the body's resistance to external stress. Several P. ginseng effects have been reported. Korean Red Ginseng, in particular, has been reported in both basic and clinical studies to possess diverse effects such as enhanced immunity, fatigue relief, memory, blood circulation, and anti-oxidation. Moreover, it also protects against menopausal symptoms, cancer, cardiac diseases, and neurological disorders. The active components found in most Korean Red Ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds. In this review, the identity and bioactivity of the non-saponin components of Korean Red Ginseng discovered to date are evaluated and the components are classified into polysaccharide and nitrogen compounds (protein, peptide, amino acid, nucleic acid, and alkaloid), as well as fat-soluble components such as polyacetylene, phenols, essential oils, and phytosterols. The distinct bioactivity of Korean Red Ginseng was found to originate from both saponin and non-saponin components rather than from only one or two specific components. Therefore, it is important to consider saponin and non-saponin elements together.

An Rapid Extraction of Ginseng Saponin Compounds (인삼사포닌 화합물의 신속한 추출)

  • Kwak, Yi-Seong;Kim, Mi-Ju;Kim, Eun-Hee;Kim, Yeoung-Ae
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1327-1329
    • /
    • 1997
  • A new rapid saponin extraction method was developed with using of organic solvent and waring blonder. There was a good correlation between previous distillation method and this method in f major ginsenosides ($Rb_1$, $Rb_2$, Rc, Rd, Re, Rg1) contents. When the ratio of methanol and chloroform was 7:3, this method showed similar saponin contents (total major. ginsenosides contents) comparing with distillation method. Contents of total major ginsenosides were 2.41% in this method and 2.54% in distillation method. However, crude saponin content of this method was higher than that of distillation method.

  • PDF

Saponin Production in Tissue Culture of Ginseng (Panax ginseng C.A. Meyer) (고려인삼의 조직배양에 의한 사포닌 생산)

  • Choi, Kwang-Tae;Park, Ji-Chang;Ahn, In-Ok
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.107-111
    • /
    • 1990
  • Ginseng root explants and calli were cultured on modified Murashine and Skoog's media supplemented with different concentrations of organic or inorganic compounds and plant growth requlators to clarify the effects of chemical compositon and plant growth regulators in the medium on the growth of ginseng calli and the production of ginseng saponin. For optimum growth of ginseng calli, the concentrations of 2, 4-D and sucrose were in the range of 1 to 5 mg/l and 1 to 3%, respectively. And it was clarified that sucrose, nitrogen, phosphate, calcium, magnesium, plant growth regulators and their concentrations influcenced the relative biosynthesis of saponin in tissue cultures of Panax ginseng.

  • PDF

Studies on the Anti-inflammatory Activity of Ginseng Total Saponin, Protopanaxadiol and Protopanaxatriol (인삼 Total Saponin, Protopanaxadiol 및 Protopanaxatriol의 소염작용에 관한 연구)

  • 조태순;이선미;정국현;이범구;이석용;박종대
    • Biomolecules & Therapeutics
    • /
    • v.7 no.2
    • /
    • pp.145-152
    • /
    • 1999
  • In an attempt to elucidate the anti-inflammatory action of ginseng total saponin, protopanaxadiol and protopanaxatriol, the anti-inflammatory activity of three compounds was investigated under various acute and chronic inflammatory models. The blood vessel permeability was slightly inhibited by total saponin and protopanaxatriol treatments. Granuloma formation induced by 2% carrageenan was inhibited by total saponin and protopanaxatriol. The cotton-pellet granuloma formation was significantly inhibited by intraperitoneal injection of total saponin. Total saponin and protopanaxadiol inhibited leukocyte emigration and protein exudation in CMC-induced pouch but protopanaxauiol increased leukocyte emigration. The swelling of rat hind paw induced by 1% carrageenan was significantly inhibited by total saponin, protopanaxadiol and protopanaxatriol both single and 2 weeks treatments. Total saponin, protopanaxadiol and protopanaxatriol decreased the anti-inflammatory activity in adrenalectomized rat. Our results suggest that total saponin, protopanaxadiol and protopanaxatriol have potent anti-inflammatory activity, this may be mediated in part through stimulation of adrenal glands.

  • PDF

The Comparison of Ginseng Saponin Composition and Contents in Dried Ginseng Radices (건삼류 생약의 인삼사포닌 성분 비교)

  • Lee, Jae Bum;Kim, Min Young;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.255-259
    • /
    • 2017
  • This study was conducted to provide basic information on ginseng saponin of dried ginseng radices. In order to achieve the proposed objective ginsenoside compositions of dried ginseng radices extract with 70% ethyl alcohol were examined by HPLC. The total saponin content, the sum of all ginsenosides, showed that Wild simulated ginseng (WSG), White fine ginseng (WFG), Skin White ginseng (SWG), and White ginseng (WG) stood at 2.510%, 1.643%, 0.587, and 0.429%, respectively. WSG in PPD/PPT ratio was highest at 3.190, WFG (1.934), WG (1.600), SWG (1.386) in order. In the content of ginsenoside Rb1, one of the marker compounds of ginseng, WSG (1.095%) showed the highest content, and WFG (0.527%), SWG (0.246%), WG (0.133%) in this order. The content of ginsenoside Rb1 of WSG (1.095%) was 4.5 times higher than SWG (0.246%). WSG (0.230%) showed the highest content in ginsenoside Rg1, a marker compounds of ginseng, followed by WFG (0.180%), SWG (0.141%) and WG (0.086%). The content of ginsenoside Rg1 of WSG (0.230%) was 1.6 times higher than SWG (0.141%).