• Title/Summary/Keyword: Ginseng polysaccharides

Search Result 95, Processing Time 0.033 seconds

Pattern-Analysis of Panax ginseng Polysaccharide (고려인삼 다당류의 패턴-분석)

  • Han, Yong-Nam;Kim, Sun-Young;Lee, Hee-Joo;Hwang, Woo-Ik;Han, Byung-Hoon
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.217-221
    • /
    • 1992
  • Total polysaccharide contents in Panax ginseng roots were evaluated by a spectrophotometry, utilizing the complex formation of ginseng polysaccharide with alcian blue dye in 50 mM ammonium biphosphate, pH 4.2. The total polysaccharide content in red ginseng was about three times higher than that in fresh ginseng when both were extracted with water, and was increased about two times when red ginseng was extracted with an alkaline solution. The determination of total polysaccharide in various parts of ginseng revealed that main roots contained the component more than fine roots. Fresh ginseng sections stained by the dye showed polysaccharide mainly found in cortex and cambium but not in epidermis. Pattern-analysis on total and acidic polysaccharides from fresh and red ginsengs exhibited that the chemical compositions of the polysaccharides extracted from both ginsengs quite differed from each other.

  • PDF

Comparative Study on Immuno-Enhancing Effects of Red Ginseng Fractions (홍삼의 분획에 따른 면역활성 비교)

  • Hyun, Sun Hee;Kim, Eun Sun;Lee, Sang Min;Kyung, Jong Soo;Lee, Sang Myung;Lee, Jong Won;Kim, Mee Ree;Hong, Jin Tae;Kim, Young Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1665-1673
    • /
    • 2014
  • The objective of this study was to compare the compositions and immuno-enhancing effects of 6-year-old red ginseng powder (RGP) with those of its fractions. RGP was subjected to extraction with 100% ethanol to obtain an ethanol fraction (E) and residue 1 (R1). Then, R1 was subjected to extraction with distilled water to obtain water fraction (W) and residue 2 (R2). Chemical compositions were as follows: 4.94% acidic polysaccharides and 1.56% ginsenosides (amounts of Rg1, Re, Rf, Rg2, Rb1, Rc, Rd, and Rg3) in RGP, 0.11% acidic polysaccharides and 6.99% ginsenosides in E, 4.93% acidic polysaccharides and 0.40% ginsenosides in R1, 0.50% acidic polysaccharides and 0.30% ginsenosides in R2, and 7.46% acidic polysaccharides and 0.61% ginsenosides in W. Immuno-enhancing effects of fractions from RGP were examined based on suppression of immune responses by cyclophosphamide. In the first fraction test, the antibody response to SRBCs increased significantly in the R1-treated group, but not the E-treated group. In the second fraction test, W showed higher immuno-enhancing effect than R1 and R2. W, which contained the highest amount of acidic polysaccharides, restored numbers of T and B cells, macrophages, as well as $CD4^+$ and $CD8^+$ T cells in the spleen suppressed by cyclophosphamide. These results suggest that acidic polysaccharides from red ginseng may be more effective than saponin in enhancing immune functions and reducing immunotoxicity of cyclophosphamide.

Ginseng polysaccharides: A potential neuroprotective agent

  • Wang, Na;Wang, Xianlei;He, Mengjiao;Zheng, Wenxiu;Qi, Dongmei;Zhang, Yongqing;Han, Chun-chao
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.211-217
    • /
    • 2021
  • The treatments of nervous system diseases (NSDs) have long been difficult issues for researchers because of their complexity of pathogenesis. With the advent of aging society, searching for effective treatments of NSDs has become a hot topic. Ginseng polysaccharides (GP), as the main biologically active substance in ginseng, has various biological properties in immune-regulation, anti-oxidant, anti-inflammation and etc. Considering the association between the effects of GP and the pathogenesis of neurological disorders, many related experiments have been conducted in recent years. In this paper, we reviewed previous studies about the effects and mechanisms of GP on diseases related to nervous system. We found GP play an ameliorative role on NSDs through the regulation of immune system, inflammatory response, oxidative damage and signaling pathway. Structure-activity relationship was also discussed and summarized. In addition, we provided new insights into GP as promising neuroprotective agent for its further development and utilization.

Preclinlcal Evaluation of Polysaccharides Extracted from Korean Red-ginseng as an Antineoplastic Immunostimulator (홍삼다당체의 항암면역증강작용 연구)

  • 김기환;정인성
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.78-84
    • /
    • 1997
  • As a part of our ongoing effort to develop new antineoplastic immunostimulator from natural sources, bioassay-directed fractionationn of polysaccharides from Korean red ginseng was carried out by observing the proliferation of marine spleen cells and the generation of lymphoklne activated killer (LAK) cells. The acidic polysaccharide fractions proliferated spleen cells and generated LAK cells in proportion to their acidity in vitro. The LAK cell which was induced by ginseng showed tumoricidal activity against both NK celt sensitive and insensitive tumor target cells without major histocompatibility (MHC) restriction. Adherent macrophages and CD4+helper T cells were involved in the generation of the LAK cells. The acidic polysaccharide from Korean red ginseng synerglzed with recombinant IL-2 (rIff-2) at lower than 3 U/ml. The optimal doses of the acidic polysaccharide from Korean red ginseng for the proliferation of spleen cells and for the generation of LAK cells were 1 mg/ml and 100 $\mu\textrm{g}$/ml, respectively; this means that the mechanisms for the both activities may be different from each other.

  • PDF

Relationship of Saponin and Non-saponin for the Quality of Ginseng (인삼의 품질과 약리활성 물질과의 상관성)

  • Nam, Gi-Yeol;Go, Seong-Ryong;Choe, Gang-Ju
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.274-283
    • /
    • 1998
  • It has generally been accepted that quality of ginseng should be determined not by the content of a single component but by composition and balance of total active principles. However, there still can be an exception with a product in which a given ginsenoside is used for the treatment of a specific disease. Although ginsenosides have been regarded to be major active components of ginseng and employed as index components for the quality control, it does not consistent with the traditional concept on ginseng quality creterion; main root has been more highly appreciated than the lateral or fine root. Content of ginsenosides in the lateral or fine root is much higher than that in main root. However, the ratio of protopanaxadiol (PD) and protopanaxatriol (PT) saponins existing in various part of ginseng root is greatly different. The ratio of PD/PT saponins in main root is well balanced but the thinner the root is the higher the ratio. Thus far, a total of 34 different kinds of ginsenosides have been isolated from Korean (red) ginseng, and their pharmacological activities were elucidated partly. Interestingly, different ginsenoside shows similar or contrary effects to each other in biological systems, thus indicating the significance of absolute content of single ginsenoside as well as compositional patterns of each ginsenoside. Therefore, pharmacological activities of ginseng should be determined as a wholly concept. In these regards, standardization of ginseng material (fresh ginseng root) should be preceded to the standardization of ginseng products because ginsenoside content and non-saponin active principles such as polysaccharides and nitrogen (N)-containing compound including proteins are significantly different from part to part of the root. In other words, the main root contains less ginsenosides than other lateral or fine roots. Contents of polysaccharides and N-containing compound in main root is higher. However, the quality control of ginseng products focused on non-saponin compounds has limitation in applying to the analytical method, because of the difficult chemical analysis of these compounds. Content of ginsenosides, and ratios of PD/PT and ginsenoside Rb,/Rg, are inversely proportional to the diameter of ginseng root. Therefore, these can be served as the chemical parameters for the indirect method of evaluating from what part of the root does the material originate. Furthermore, contents of polysaccharides and N-containing compounds show inverse relationship to saponin content. Therefore, it seems that index for analytical chemistry of saponin can be applied to the indirect method of evaluating not only saponin but also non-saponin compounds of ginseng. From these viewpoints, it is strongly recommended that quality of ginseng or ginseng products be judged not only by the absolute content of given ginsenoside but also by varieties and compositional balance of ginsenosides, including contents of non-saponin active principles.

  • PDF

Inhibitory Effect of Ginseng on Infection and Vacuolation of Helicobacter pylori

  • Kim, Jong-Mi;Shin, Ji-Eun;Han, Myung-Joo;Choo, Min-Kyung;Park, Sung-Whan;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.163.3-163.3
    • /
    • 2003
  • Panax ginseng C.A. Meyer (Family Araliaceae) was treated at low ($60^{\circ}C$, LT), mild ($100^{\circ}C$, MT) and high ($120^{\circ}C$, HT) temperatures, some components (panaxytriol, ginsenosides and polysaccharides) were isolated, and their inhibitory effects on growth, infection and VacA vacuolation of Helicobacter pylori (HP) were investigated. The molecular weights of polysaccharides were decreased according to the increasing processed temperature. Ginseng polysaccharides inhibited the HP infection into KATO III cells, but did not inhibit HP growth and VacA vacuolation of HeLa cells. (omitted)

  • PDF

Antitimor Activity of Some Phytobased Polysaccharides and their Effects on the Immune Function

  • Moon, Chang-Kiu;Sim, Kyl-Soon;Lee, Soo-Hwan;Park, Kwang-Sik;Pyo, Yun-Yeo;Ha, Bae-Jin;Lee, Chong-Chul
    • Archives of Pharmacal Research
    • /
    • v.6 no.2
    • /
    • pp.123-131
    • /
    • 1983
  • Polysaccharide fractions were prepared from Ginseng root, Mori Radicis Cortex (M. R. C. ), Phellodendri Cortex (Ph. C. ), Sappan Wood (S. W. ) and Tigli Semen (T. S.). Water extract was also prepared from the mixture of ph. C., S. W. and T. S. Ginseng polysaccharide and water extract of the mixture showed marked antitumor activity against sarcoma 180. Ginseng polysaccharide showed a mild increasing effect on the number of circulating leucocytes and a marked increasing effect on the number leucocytes and a marked increasing effect on the number of plaque forming cells (PEC). Polysaccharides from ginsing root, S. W., Ph. C. + T. S. and water extract of the mixture showed dramatic inducing activities of periotoneal exudate cells (PEC), polymorphonuclear leucocytes (PMN) and macrophages. These results suggest the possibility that water extract of the mixture may have the lentinan like effect and ginseng polysaccharide may have stimulating effects on the general immune system.

  • PDF

Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.165-176
    • /
    • 2009
  • Korean ginseng, which contains ginsenosides and polysaccharides as its main constituents, is orally administered to humans. Ginsenosides and polysaccharides are not easily absorbed by the body through the intestines due to their hydrophilicity. Therefore, these constituents which include ginsenosides Rb1, Rb2, and Rc, inevitably come into contact with intestinal microflora in the alimentary tract and can be metabolized by intestinal microflora. Since most of the metabolites such as compound K and protopanaxatriol are nonpolar compared to the parental components, these metabolites are easily absorbed from the gastrointestinal tract. The absorbed metabolites may express pharmacological actions, such as antitumor, antidiabetic, anti-inflammatory, anti-allergic, and neuroprotective effects. However, the activities that metabolize these constituents to bioactive compounds differ significantly between individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. Recently, ginseng has been fermented with enzymes or microbes to develop ginsengs that contain these metabolites. However, before using these enzymes and probiotics, their safety and biotransforming activity should be assessed. Intestinal microflora play an important role in the pharmacological action of orally administered ginseng.

Studies on the Nonstarchy Polysaccharides of Korean Ginseng, Punux ginseng C. A. Meyer 1. Cotent and Composition of dietary fober, hemicellulose, cellulose, lignin and pectin. (고려인삼(Panax ginseng C.A. Meyer)의 비전분성 다당류에 관한 연구 1. Dietary fibre, hemicellulose, Cellulose, lignin 및 Pectin 함량과 조성)

  • 민경천;조재순
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.91-104
    • /
    • 1984
  • This study was conducted to investigate the characteristics of nonstarchy polysaccharides in Korean ginseng, (Panax ginseng C.A. Meyer). The results obtained are as follows. 1. The total sugar content of ginseng roots were decreased with increasing the cultural period. On the other hand, the crude fiber content was increased with that of the ginseng leaves or stems. But the crude fiber in root was much less than that of leaves and stems. 2. The dietary fiber content of ginseng root on 5 years old was 14.20% as neutral detergent fiber, 9.08% as acid detergent fiber, hemicellulose 5.12%, cellulose 7.98% and lignin of 1.10%, respectively. 3. Much more pectin was found in ginseng roots which was cultivated for shooter Period. And it was contained much more in the root than in the leaves and stems. 4. ginseng hemicellulose content in root was 5% to 10%. It was decreased with increasing: cultivated period. Hemicellulose was constituted of xylose, arabinose, glucose, rhamnose and xylose of these sugars was the predominant. 5. X-ray diffraction Pattern of ginseng cellulose showed maximum intensity at tile interplanar angle of 4.1$^{\circ}$.

  • PDF

Panax Ginseng in the treatment of Alzheimer's disease and vascular dementia

  • Zhiyong Wang;Zhen Zhang;Jiangang Liu;Mingdong Guo;Hao Li
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.506-514
    • /
    • 2023
  • Dementia has become one of the most important diseases threatening human health. Alzheimer's disease (AD) and vascular dementia (VaD) have the highest incidence rates among the types of dementia, but until now, therapeutic methods have been limited. Panax ginseng has been used in China for thousands of years to treat dementia, and modern medical studies have found that it contains multiple active components, such as ginsenosides, polysaccharides, amino acids, volatile oils and polyacetylenes, many of which have therapeutic effects in treating AD and VaD. Studies have found that ginsenosides have multitarget therapeutic effects in treating dementia, such as regulation of synaptic plasticity and the cholinergic system, inhibition of Aβ aggravation and tau hyperphosphorylation, anti-neuroinflammation, anti-oxidation effects and anti-apoptosis effects. Other active components of Panax ginseng, such as gintonin, oligosaccharides, polysaccharides and ginseng proteins, also have therapeutic effects on AD and VaD. The effectiveness of ginseng-containing Chinese medicine compounds has also been confirmed by clinical and basic investigations in treating AD and VaD. In this review, we summarized the potential therapeutic effects and related mechanisms of Panax ginseng in treating AD and VaD to provide some examples for further studies.