• Title/Summary/Keyword: Ginseng field

Search Result 437, Processing Time 0.022 seconds

Studies on the Effect of Shading Materials on the Temperature, Light Intensity, Photosynthesis and. the Root Growth of the Korean Ginseng(Panax Ginseng C.A. Meyer) (차광하의 온도 및 광도가 고려인삼의 광합성 및 근생장에 미치는 영향)

  • 이종철;천성기;김요태;조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.91-98
    • /
    • 1980
  • Three kinds of shading materials, styrol-foam board, pine board and polytex, were examined and compared with ordinary shading, and the effects of light intensity and the temperature under the shadings on the photosynthesis and the root growth of the Korean ginseng were studied to improve the shading on the ginseng field. The amounts of photosynthesis of the ginseng leaves at 2$0^{\circ}C$ were significantly larger than those at 3$0^{\circ}C$ in the same light intensity. At 2$0^{\circ}C$, the maximum photosynthesis occured at 35, 000 lux, but at 3$0^{\circ}C$, the amount of photosynthesis was rapidly reduced by higher light intensity over 26, 200 lux. The best root growth occurred under the polytex shading and the styrol-foam board shading was also effective for ginseng growth. Under the ordinary shading, the root growth of ginseng planted on rear line was very poor but under the styrol-foam or the polytex shading, the root growth showed little difference between the ginsengs planted on rear line and front line.

  • PDF

Root Rot of Panax Ginseng Caused by Serratia liquefaciens (Serratia liquefaciens에 의한 인삼뿌리썩음병)

  • Dong Gi Kim;Soon Gu Lee;Young Keun Lee;Jong Pal Lee;Ki Chai Jung
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2004
  • The diseased ginseng plants, their trunks fall down anil roots rot, were observed in ginseng cultivation field at Bongwha, Kyungbuk. Inoculation of the bacterium isolated from root rot lesion induced a range of symptoms on leaves, trunks and roots; The bacterium caused wilting with chlorosis and black discoloration on leaves, empty of inside trunks and rot on roots. The bacterium was identified as Serritia liquefaciens based on the morphologcal and physiological characteristics. This is the first report in Korea on roots rot of ginseng occurred by S. liquefaciens.

Neurotrophic Actions of Ginsenoside Rbi, Peptide Growth Factors and Cytokines

  • Masahiro Sakanaka;Wen, Tong-Chun;Kohji Sato;Zhang, Bo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.21-30
    • /
    • 1998
  • Ginseng root has been considered to prevent neuronal degeneration associated with brain ischemia, but experimental proof in support of this speculation is limited. Moreover, few studies have compared the neuroprotective actions of ginseng ingredients with those of peptide growth factors and cytokines isf vivo. Using a gerbil forebrain ischemia model, we demonstrated that the oral administration of red ginseng powder before an ischemic insult prevents delayed neuronal death in the hippocampal CAI field and that a neuroprotective molecule within red ginseng powder is ginsenoside Rbl. The neurotrophic effect of ginsenoside Rbl, when examined in the gerbil ischemia model and in neuronal cultures was as potent as or more potent than the effects of epidermal growth factor, ciliary neurotrophic factor, erythropoietin, prosaposin, interleukin-6 and interleukin-3. Besides the protection of hippocampal CAI neurons against brain ischemia/repercussion injuries, ginsenoside Rbl was shown to prevent place navigation disability, cortical infarction and secondary thalamic degeneration in stroke-prone spontaneous hypertensive rats with permanent occlusion of the unilateral middle cerebral artery distal to the striate branches. These findings may validate the empirical use of ginseng root for the treatment of cerebrovascular diseases

  • PDF

Influence of Soil Flooding with Organic Matters Amendment at Various Temperatures on Changes of Microbial Populations in Ginseng-Replanting Field Soils (유기물 첨가 및 온도에 따른 담수처리가 인삼 재작지 토양의 미생물 밀도의 변화에 미치는 영향)

  • 박규진;변정수;이일호;박현석
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • Influence of soil flooding with organic matters amendment at various temperatures on population changes of fungi, including Fusarium, and bacteria in ginseng-replanting field soils was examined to evaluate the effective flooding conditions for reducing the progress of ginseng root rot. Populations of Fusarium spp. and total fungi in flooded soils declined with days after flooding. The higher was the temperature in range of 20$\^{C}$ to 35$\^{C}$, the greater was the effect of flooding on the decrease of the fungal population. Flooding of soils with organic matters amendment had synergistic effect on the decrease of the fungal population at the same temperature; Fungal populations in flooded soils with and without organic matters amendment were reduced to 1/100 and 1/10, respectively, relative to those in non-flooded soils after 60 days of treatment at 30$\^{C}$. rice straw seemed to be more effective than greens. Population changes of total bacteria in flooded soils were similar to the trend of total fungi. However, the flooding seemed to influence less effect on the bacterial population than on the fungal population. Based on these experiments, we suggest than the progress of ginseng root rot in ginseng-replanting field soils may be significantly reduced by flooding them for longer than 3 months near at 30$\^{C}$ after amendment of organic matters.

  • PDF

Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis (토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상)

  • Lee Min Woong;Choi Hae Jung;Shim Jae Ouk
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.157-164
    • /
    • 1985
  • Some interactions in various soil conditions, numbers of microbial populations, root rot disease development and rates of spore germiation in three different location of soils were investigated. The calcium and magnesium contents were higher in replanted fields of ginseng (Panax ginseng) at Goesan. Potassium contents were high in replanted field at Poonggi and textural class of the soils was silt loam except for silt clay loam in first cultured field of ginseng at Goesan. For the germination process of Fusarium solani, F. moniliforme, F. oxysporum, and Alternaria panax, the percentage germination of fungal spores was high in double distilled water and Pfeffer's solution as media, whereas the lower rate of germination of spores was observed in soil extracts. Numbers of bacteria were high in replanted field soil at Gumsan, and propagules of fungi in replanted fields at Gumsan and Poonggi were higher than other soils, but higher numbers of actinomycetes were found in the first cultured field of ginseng at Goesan and Poonggi. Fungistasis was induced by higher microbial populations present in soil that was initiated when amended with garlic stalk, crushed bean and ginseng leaves. On the other hand, there was no fungistasis in soil amended with wheat and barley straw, and this tendency was a little difference on the soil sample.

  • PDF

Control Efficiency for Ginseng Anthracnose by Eco-Friendly Organic Materials (유기농업자재를 이용한 인삼 탄저병의 친환경 방제효과)

  • Kim, Woo Sik;Park, Jee Sung;Ahn, In;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • This study was conducted to select and develop effect of eco-friendly organic materials for the eco-friendly prevention of Anthracnose occurred in the ginseng. Anthracnose on ginseng is occurred by Colletotrichum gloeosporioides and the crop damage is severe especially from July to August after rainy season. The test results showed that control effect by test products materials on the three years ginseng and four years ginseng field was lower in eco-friendly organic materials than that of chemical pesticide. However, the control effect of bordeaux mixture was higher with 71.3% and 73.8% levels than those of mineral matter, microbial agent, and developed plants extract mixtures (Eugenol, Curcumin, Wood vinegar, etc). On the other hand, three types of developed plants extract mixtures (3 types) showed control effect in a range of from 58.1% to 63.6% against Anthracnose which was higher as compared with plant extract alone and sodium silicate regardless of ages of ginseng. The results of this study would attribute in verifying the control effect of eco-friendly materials against Anthracnose for ginseng through investigating antimicrobial compounds contained in the plants body. Also, it would be used as control method against Anthracnose occurred in ginseng by judging the right control time through monitoring occurrence of disease.

Effects of Plant Growth Regulator Treatment on Ginseng berry and seed development in Panax ginseng C. A. Meyer (식물생장조절제 처리가 인삼의 장과 및 종자 형성에 미치는 영향)

  • Jo, Seo-Ri;Kim, Jung-Sun;Lee, Nu-Ri;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.315-319
    • /
    • 2012
  • This study was conducted to select plant growth regulators effective at ginseng berry set inhibition to help root growth in Korean ginseng (Panax ginseng C. A. Meyer). PGRs (ethephon, gibberellic acid, maleic hydrazide, coumarin) were applied to field grown 5-year-old Korean ginseng between one and two times, before and during bloom in 2009, 2010. The number of treatment was more effective in ginseng berry set inhibition when used two times compared with one time in GA 1,000 ppm, MH (5,000, 10,000 ppm), coumarin (5,000, 10,000 ppm) treatment. According to treatment period of plant growth regulator, ginseng berry set inhibition rate from 20days before flowering date to 5days after blooming was the highest in MH 5000 ppm showing 99.9% and the lowest in GA 100 ppm showing 32.8%. The spray treatments of Ethephon (50, 150 ppm) and MH (5,000, 10,000 ppm) from 20 days before the flowering bloom up to 5 days before, and coumarin (5,000, 10,000 ppm) from 20 days to 6 days and before blooming that induced the inhibitory effect more than 90% after 12 weeks. Considering ginseng berry set inhibition characteristics and treatment period ethephon and coumarin was important about applied period but, MH treatment appeared to effective ginseng berry set inhibition regardless of treatment period.

The Analysis of Reduction Efficiency of Soil Erosion and Sediment Yield by a Ginseng Area using GIS Tools

  • Lee, Geun-Sang;Jeon, Dae-Youn
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.431-443
    • /
    • 2009
  • Recently, turbidity problem is one of the hot issues in dam and reservoir management works. Main reason to bring about high density turbid water is sediment yield by rainfall intensity energy. Because existing researches didn't consider diverse types of crops, it was difficult to calculate more accurate soil erosion and sediment yield. This study was evaluated the reduction efficiency of soil erosion and sediment yield using ginseng layer extracted from IKONOS satellite image, and the area and the ratio of ginseng area represented $0.290km^2$ and 0.94%. The reduction efficiency of soil erosion considering ginseng area represented low value in 0.9% using GIS-based RUSLE model, because the area of ginseng was small compared to areas of other agricultural lands. To reflect future land use change, this study was calculated the reduction efficiency of soil erosion and sediment yield by considering many scenarios as kinds of crops of paddy, dry field, orchard, and other agricultural areas convert to the ginseng district. As result of analysis of them according to scenarios, scenario (1) in which dry field was converted to ginseng area and scenario (2) in which fully agricultural lands were converted to ginseng area showed high reduction efficiency as 31.3% and 34.8% respectively, compared to existing research which didn't consider ginseng area. Methodology suggested in this study will be very efficient tools to help reservoir management related to high density turbid water.

  • PDF

Study on the Korean wild ginseng(SANSAM) in cosmetics

  • Lee, C. W.;Lee, K. W.;K. K. Bae;Kim, C. H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.26-31
    • /
    • 2003
  • Korean Ginseng is a medicinal herb which grows naturally in korea. an ancient country situated in north-eastern Asia. Its medical use was already well known to herb doctors in this region about five thousand years ago since the effectiveness of korean ginseng has been recognized through practical use for a long time. Korean Ginseng has always been regarded as a devine cure. The name "Ginseng" can be found in various medicinal books. many of which were written as early as B.C. 100. In the records of many chinese medical books. dating from the inception of publishing, it was noted that Korean Ginseng was of the highest level of quality. Korean Ginseng originally grew in the mountains of korea. However, this wild Korean Ginseng(js called SANSAM) could not meet the ever-increasing demands. and from the 16th century. it has been cultivated on farms for mass processing and supplying in korea(js called INSAM). It was already recognized in korea a long time ago(B.C. 57 - A.D. 668) that Korean Ginseng possessed the qualities of panacea, tonic and rejuvenator, and had other medicinal properties as well. The effectiveness of Korean Ginseng is widely recognized among south-eastern Asians as well as Chinese. As its effect has been proved scientifically. Korean Ginseng is now becoming the ginseng for all human beings in the world. Korean ginseng is differently called according to processing method. Dried thing is Insam(white ginseng), boiled or steamed is Hongsam(red ginseng). 장뇌삼(long headed ginseng) is artificially grown in the mountain no in field for a long time. So the body is thin and some long. but ingredients are concentrated. Korean wild ginseng(SANSAM) is rare in these days but we developed cosmetic ingredient. The scientific name of Korean Ginseng is Panax Ginseng. It has acknowledge as a natural mysterious cure among the notheastern peoples. because of its broad medicinal application. The origin of the word" Panax" derived from panacea. a Greek word meaning cure-all. According to the classification method of herb medicines in the Chinese medicinal book. "God-Farmer Materia Medica(A.D. 483-496) korean Ginseng was described as the superlative drug: panacea. tonic and rejuvenator. We studied skin immunological effect. collagen synthesis. cell growth and whitening effect of SANSAM extract. IN cosmetics.. SANSAM extract had skin fibroblast cell growth effect. recover damaged skin in the sun and protect fine wrinkle. Also. In hair product.. inhibits hairless, white hair.its hairless, white hair.

  • PDF

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.