• Title/Summary/Keyword: Gilbert damping parameter

Search Result 3, Processing Time 0.019 seconds

Optimization of Ferromagnetic Resonance Spectra Measuring Procedure for Accurate Gilbert Damping Parameter in Magnetic Thin Films Using a Vector Network Analyzer

  • Kim, D.H.;Kim, H.H.;You, Chun-Yeol;Kim, Hyung-Suk
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.206-210
    • /
    • 2011
  • We optimize a vector network analyzer ferromagnetic resonance (VNA-FMR) measurement system to study spin dynamics and Gilbert damping parameters of thin ferromagnetic films. In order to obtain accurate damping parameters, careful determination of the susceptibility line-width is required. The measured S-parameters are converted into the corresponding susceptibility through a calibration processes. From the line-width measurements, we can successfully extract the saturation magnetizations and Gilbert damping parameters of 5-, 8-, and 10-nm thick $Ni_{81}Fe_{19}$ (Py) films.

Dynamic Spin Switching of Magnetic Films and Tunnel Junctions

  • Miyazaki, T.;Ando, Y.;Kubota, H.;Mizukami, Y.;Nakamura, H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.272-273
    • /
    • 2003
  • Spin dynamics has been investigated intensively in various kinds of fields. Most popular one is an initial permeability at high frequency. Also, magnetic after-effect such as thermal fluctuation of fine magnetic particles and disaccommodation in soft magnetic materials were extensively studied in the past. When we apply an external farce with the same frequency as that of the system being examined, the system absorbs the external energy and the precession enhances. It is called resonance in general. Among the various resonances, ferromagnetic resonance (FMR) has been used as a good tool to evaluate material constants such as saturation manetization or spin damping parameter by analyzing a resonance curve. In this talk first instinctive understanding of Gilbert spin damping and spin pumping will be explained. Then, experimental data for enhancement of Gilbert damping parameter (G) evaluated from FMR spectrum and spin precession measured by a time resolved pump-probe method for Permalloy thin film will be introduced. Finally, magnetization reversal observed by air-coplanar probe will be given.

  • PDF

Vector Network Analyzer Ferromagnetic Resonance Study of Py Thin Films (Vector Network Analyzer를 이용한 Py 박막의 강자성공명연구)

  • Shin, Yong-Hwack;Ha, Seung-Seok;Kim, Duck-Ho;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Ferromagnetic resonance (FMR) measurement is an important experimental technique for the study of magnetic dynamics. We designed and set up the vector network analyzer ferromagnetic resonance (VNA-FMR) measurement system with home made coplanar waveguides (CPW). We examined 10-, 20-, 40-nm thick Py thin films to test the performance of the VNA-FMR measurement system. We measured S-parameter (transmission/reflection coefficient) of Py thin films on a CPW. Resonance frequency is investigated from 2.5 to 7 GHz for a field range from 0 to 490 Oe. The VNA-FMR data shows the resonance frequency increment when the external magnetic field increases. We also investigated Gilbert damping constant of Py thin film using resonance frequency (${\omega}_r$) and linewidth ($\Delta\omega$). After investigating dependence of thickness, we find that an decrease in S-parameter intensity as Py thin film thickness decreases. And the FMR results show that the effective saturation magnetization, $M_{eff}$, increase from 7.205($\pm$0.013) kOe to 7.840($\pm$0.014) kOe, while the film thickness varies from 10 to 40 nm.