• Title/Summary/Keyword: Gigahertz frequency

Search Result 7, Processing Time 0.019 seconds

THz Photonics and the meaurement of dielectric and optical properties of thin films (테라헬츠 포토닉스와 여러 가지 나노박막의 유전 및 장학적 특성의 측정)

  • Lee Gwang-Su
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.172-173
    • /
    • 2002
  • As feature sizes of circuits and devices approach 100 m and chip frequencies climb into the upper gigahertz to terahertz range, it becomes increasingly important to have a convenient method of characterizing properties of thin dielectric films in the GHz to THz frequency range [1]. To measure the dielectric and optical properties of materials at THz frequency, a TH2 time-domain spectroscopy has been utilized during past decade. (중략)

  • PDF

Characteristics of Carbon Nanotube Oscillator for Embedded System (임베디드 시스템을 위한 탄소나노튜브 오실레이터의 특성 해석)

  • Lee, Jun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1150-1153
    • /
    • 2008
  • The coupled oscillation of multi-walled carbon-nanotube (MWCNT) oscillators consisting of (5n, 5n) CNTs was investigated by molecular dynamics simulations. The results show that the inter-wall coupling leads to frequency splits. And there are consistently three primary frequency peaks for the quadric-walled, penta-walled and hexa-walled CNT oscillators. It is independent of the wall parameters, suggesting applications as triple-frequency generators. Furthermore, at least one of the primary frequencies of a MWCNT oscillator is lower than that of its double-walled counterpart.

High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement (무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링)

  • Kim, yungmin;Song, Eakhwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • In this paper, a new high-frequency equivalent circuit model of printed spiral coils (PSCs) for radio-frequency interference (RFI) measurement has been proposed. To achieve high-frequency modeling, the proposed model consists of distributed components designed based on the design parameters of the PSCs. In addition, an analytic model for PSCs based on T-pi conversion has been proposed. To investigate the feasibility of the proposed model for RFI measurement, the transfer function between a microstrip line and a PSC has been extracted by combining the proposed model and mutual inductance. The self-impedances of the proposed model and the transfer function have been successfully validated using three-dimensional field simulation and measurements, revealing noticeable correlations up to a frequency of 6 GHz. The proposed model can be employed for high-frequency probe design and RFI noise estimation in the gigahertz range wireless communication bands.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

Decision of Optimum Turn Step Resolution for Extraction of the Spurious Radiation in Gigahertz Band (기가헤르쯔 대역 불요파 방사의 최대값 추출을 위한 최적 회전 스텝 분해능 결정)

  • 허민호;윤영중;정삼영;공성식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • In this paper, suitablility of 1 GHz CISPR limits establishment fur broadcast communication quality protection is examined and the optimum turn step resolution of EUT for spurious measurement of frequency above 1 GHz to increase the accuracy of maximum values extraction is examined. As a result of 500 MHz and 1.7 GHz clock speed personal computer of micro-processor measurement, optimum turn step resolution extracted by National Institution of National Instrument of Standard & Technology(NIST) Koepke method is estimated 40 table positions per polarization in 500 MHz. And in case of 1.7 GHz, step size is 36 table positions. Prediction of turn step size required for fully scan method in gjgahertz measurement will increase measurement accuracy and reduce considerable measurement time as well.