• Title/Summary/Keyword: Germination trigger

Search Result 2, Processing Time 0.02 seconds

Influence of Germination Triggers on Control Efficacy of an Entomopathogenic Fungus Beauveria bassiana against Myzus persicae (곤충병원성 곰팡이 Beauveria bassiana 포자 발아촉진제가 복숭아혹진딧물 살충효과에 미치는 영향)

  • Kim, Jeong-Jun;Zhu, Hong;Seok, Soon-Ja;Lee, Sang-Yeob
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.256-258
    • /
    • 2011
  • This study was conducted to investigate agents inducing conidial germination of an entomopathogenic fungus, Beauveria bassiana KK5. Different chemicals including carbohydrates were mixed with conidia of B. bassiana and incubated on water agar for 12 hours. Fructose, mannose and skim milk were useful for spore germination compared to other chemicals. Bioassays against green peach aphids were conducted with the fungal conidia suspended in 1% fructose, mannose and skim milk. Of them, a mixture of skim milk plus conidia of B. bassiana KK5 showed the highest mortalities against $3^{rd}$ instar of green peach aphid.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.