• Title/Summary/Keyword: Germination ratio

Search Result 322, Processing Time 0.027 seconds

Seed Pelletizing of Salvia splendens and Calendula officinalis for the Greening and Re-vegetating (녹화와 식생조성을 위한 샐비어와 금잔화 종자의 펠렛처리)

  • Kim, Seung-Hyun;Lee, Byoung-Ryong;Choi, Byoung-Kon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.67-75
    • /
    • 2007
  • The purpose of this study was to pelletize to calendula and salvia seeds with peat moss as basic material for the efficient greening and vegetating of slopes and damaged areas. Also the pelletizing was compressed by spherical types that mixed basic fertilizer of N.;300 mg/l, P.;200 mg/l, K.;400 mg/g and plant growth regulator of A and NAA each 300PPM. Soil and soil surface seeding methods were researched to find the growing state of germination percent, germination date, germination force, length of leaf, number of leaf, width of leaf, length of plant, and etc. Comparing with controlled pelletizing, peat moss and +GA pelletizing treatments resulted in higher from two to three times as following growing states : length of leaves, number of leaves, width of leaves, length of plants, length of roots, fresh weights, and ratio of germination. Especially the two treatments above showed four more times effects than the +NNA treatment. Also their germinating date germinating force were earlier and stronger. The surface seeding method was superior to soil seeding.

Nutritional Changes of Buckwheat During Germination (발아중 메밀의 영양성분의 변화)

  • Lee, Eun-Hye;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.1
    • /
    • pp.121-129
    • /
    • 2008
  • To produce buckwheat sprouts, buckwheats were germinated at $23{\pm}2^{\circ}C$ up to 8 days in total darkness. In proximate analysis, moisture content increased from 13.87% of buckwheat groats to 93.75% of buckwheat sprouts on the 8th day of germination. On dry weight basis, lipid and ash contents increased like as protein content increased from 13.45% to 21.82% while carbohydrate content decreased due to enzyme hydrolysis. Amino acids were rich in glutamic acid, aspartic acids, and lysine, and also the ratio of the essential amino acids to total amino acids increased from 26.84% to 36.84%. Vitamin C did not exist in buckwheat groats but its content has continued to increase as far as 99.56 mg/100 g buckwheat sprouts. Rutin continued to increase by HPLC analysis from 4.71 mg/100 g buckwheat groats to 1,524 mg/100 g buckwheat sprouts. In analysis of organic acids, oxalic, maleic, and citric acids were commonly found in buckwheat sprouts. Fagopyrin was found almost none in buckwheat sprouts. In conclusion, the conversion of buckwheat seeds into sprouts through germination in darkness results in physically different final product with nutritional changes such as higher content of rutin, generation of vitamin C, abundance of the essential amino acids, and the existence of fagopyrin on very little.

Development in Planting Porous Block for Revegetation (녹화용 다공질 식재 블럭의 개발)

  • Ahn, Young-Hee;Choi, Kyoung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is carried out to make the environmentally affinitive porous planting block for revegetation and to make a effective program for greening plans. The summary is shown below. 1. In order to get stronger intensity and distribute proper porosity in the block for planting, the cements mixed with fine soil were used and the finer in soil grains gives the stronger in intensity of the cements. Use of the furnace slag cements instead of the portland cements showed relatively stronger in intensity of the block. The intensity of the block became stronger when the mixed ratio of the cements to soil is 5 : 1, but the pore space ratio was lower. The percolate pH of the portland cements after one month of treatment was 13.1 but the percolate pH of the furnace slag cements was shown lower. To mold proper porous planting blocks, the proper combination of additives such as the dehydrating agent, elastic agent and adhesives into the mixture of cements and soil gives better effectives. 2. After molding the porous planting blocks, it gave a better result when the grains of the filler made of peat moss, upland soil and compound fertilizer were smaller than 2 mm in size. Shaking of the filling materials also gave the better result, but it took more time and cost much more. Therefore, it was better when the filling materials were mixed with water first then flew down for stuffing. 3. It was necessary to cover with soil after seeding or planting on the porous planting blocks. The proper thickness of the soil to help root development and keep moisture is about 3~5 cm. 4. The plants for planting on the porous planting block were required stronger in the growth condition of their roots and their environmental adaptability. The average germination percentage and rate of Platycodon grandiflorum on the porous planting block were 88.8% and 85% accordingly and their rate is very uniform. The germination rates of Dianthus superbus var. longicalycinus and Taraxacum officinale were more than 50%. These grass species, Chelidonium majus var. asiaticum, Lysimachia mauritiana and Scabiosa mansenensis were the suggested biennial grasses in the planting area where exchanging of the seedling or nursery plants was not necessary because their germination rates were 59.3, 45.6 and 40.3% accordingly. Viola kapsanensis, Chrysanthemum sp., Taraxacum sp. and Iris ensata var. spontanea are the grass species that could be used by seeding for greening. However, the germination rate of Solidago virga-aurea var. asiatica, Aster scaber and Lythrum anceps were lower than 10%. The coverage ratio of Ixeris stolonifera is more than 80% after 60 days seeding and the root length of most of species are more than 10 cm except Iris ensata var. spontanea and Platycodon grandiflorum because their root developed thicker than other species.

Rooftop Planting Methods and Invading Species (옥상녹화 식재기법에 따른 식생변화 - 이입식물을 중심으로 -)

  • Choi, Hee-Sun;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.35-47
    • /
    • 2004
  • In order to study changes in vegetation pursuant to rooftop revegetation plantation methods, plantation methods for rooftop revegetation were divided into two types through an analysis of recent trends. Then, Planted plants and invasive plants on sites where the planting methods were introduced were monitored. Planting methods were divided into mono-layer meadow cover type and multi-layer planting cover type. They showed some differences in terms of the availability of wetland, the structure of vegetation layers, the planted species, and the material of mulching. According to the results of monitoring the two sample sites for different plantation methods, the number of invasive plants was higher in multi-layer planting cover type and the ratio of naturalized plants was higher by 30% in average in mono-layer meadow cover type. The main reason for such a result is that the natural soil used in the multi-layer planting cover type likely contained some seeds. Moreover, it's harder for invasive plant seeds to germinate in volcanic rocks than in natural soil. Also, it is attributable to wetlands available in multi-layer planting cover type and diverse living environments created by multi-layer planting. The reason of the ratio of naturalized plants being higher by at least 10% in mono-layer meadow cover type is the character of naturalized plants being stronger in unfavorable conditions than nature plants are. Accordingly, the germination rate in the volcanic rock mulching has likely contributed in raising the introduction and germination of naturalized plants. The results showed that multi-layer planting cover type using wetland creation and nature soil can increase the number of invasive plants and lower the ratio of naturalized plants. However, since seeds contained in the natural soil can affect the growth of planted plants, this needs to be clarified, It was judged that mono-layer meadow cover type may affect more greatly on the germination and growth of invasive plants than on those of planted plants, Its potential adoption in highly urbanized areas was examined. By complementing with the mutual benefits of each plantation method, it appeared possible to shift to a rooftop revegetation system suitable to the site.

Low Temperature Storage of Rough Rice Using Cold-Air in Winter(I) - Storage Characteristics after Rough Rice Cooling - (겨울철 냉기를 이용한 벼의 저온저장(I) - 벼 냉각 후 저장특성 -)

  • Lee J. S.;Han C. S.;Ham T. M.;Yon K. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.155-160
    • /
    • 2005
  • The objective of this research was to establish a domestically available cooling storage technique by cold-air in winter, using winter cool air ventilation fur determining rough rice cooling method in the storage and dry bin. The rough rice storage characteristics of two test conditions, winter cool-air ventilation storage and ambient temperature storage, were evaluated from January to July 2001, using a storage and dry bin of 300-ton capacity. Results of this research are as follows: Grain temperature was from $-5.1\~-8.5^{\circ}C$ after winter cool-air ventilation, and grain initial temperature for ambient temperature bin storage was $0.3\~1.9^{\circ}C$. Moisture content of rough rice decreased from $0.28\;to\;0.93\%$ and from $1.53\;to\;1.92\%$ to compare with original moisture contents for winter cool-air ventilation, and for ambient temperature bin storage, respectively. Broken ratio of brown rice from winter cool-air ventilation bin increased from $0.16\;to\; 0.92\%$, and brown rice broken ratio was from $2.24\;to\;2.86\%$ for ambient temperature bin storage to compare with initial broken ratio. Hardness of stored rice increased along storage period increase in alt storage methods, and cooling bin storage increased rice hardness of 0.271kgf: this increasing was lower then the other methods from 0.059 to 2.239kgf. Germination rates were decreased approximately 9.03, 3.14 and $3.20\%$ for upper, middle, and bottom of ventilating winter air bin, respectively, and germination rates of 2.70, 3.47 and $4.14\%$ were approximately decreased for upper, middle, and bottom parts of ambient temperature bin storage, respectively.

An inhibitory of seed germination by an extracellular metabolite of Pseudomonas sp. F721 (Pseudomonas sp. F721의 세포외 대사산물에 의한 종자의 발아억제)

  • O, Gyeong-Taek;Ryu, In-Jae;Lee, Min-Ju;Kim, Hong-Jae;Kim, Seong-Jun;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.681-684
    • /
    • 2001
  • Pseudomonas sp. F721 isolated from soil produced a substance related in seeds germination inhibition. Addition of phytohormone, and GA (gibberellin acid) in the culture broth elevated production of the germination inhibition substance. The production of the substance was optimized in the culture conditions of $35^{\circ}C$, pH 9.0, 150 rpm, 48 hr, glucose 0.5% (w/v), and innoculation ratio 1.0% (v/v). The physical and chemical stability of the substance in the variety of pH ranging from 2.0 to 12.0 and from freezing to $100^{\circ}C$ were shown. The germination inhibition substance suppressed 90% of germination compared with that of the control experiment in a few days.

  • PDF

Effects of Compost Derived from Food Wastes on Germination and Growth of Vegetables (음식폐기물로부터 유도된 퇴비가 채소류의 발아 및 생육에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.21-26
    • /
    • 2001
  • This study was performed to define the physicochemical characteristics of food waste and food wastewater, and to find the effect of salinity variation experiment, the samples of 1, 2, 3 and 4 were prepared by the salinity of 1.0%, 1.5%, 2.0% and 2.5%, respectively. In experiment, aerobic composting reactors were operated by the model which was composed of half an hour's stirring and 2 hour's aeration per day, for 45 days. Seeds of vegetables of Chinese cabbage and red pepper were seeded at compost-free control, compost 1, 2, 3 and compost 4 for the sake of investigation of germination rate and growth rate of those. The followings are the conclusions that were derived from this study. 1. In food waste, the moisture content was 60%, organic compound content was 95%, total carbon was 47.5%, total nitrogen was 1.6%(therefore, C/N ratio was 30). The values of pH were 4.0 and 3.8 the values of salinity were 0.9% and 1.2%, and the values of conductivity were 7.8 mS/cm and 18.0 mS/cm, respectively. 2. In salinity experiment, the reduction rate of volume was increased(40%) when the salinity was decreased(1.0%). Also, the reduction rate of mass was increased(52%) when the salinity was decreased(1.0%). This fact denotes that salinity hinders the process of composting. 3. Germination rate and growth rate of Chinese cabbage are more excellent than those of red pepper(97.14%, 5.2:2.5 cm). 4. In Chinese cabbage, germination rate and growth rate at compost with the lowest salinity are more excellent than those at compost-free control(97:94%, 5.2:4.5 cm).

  • PDF

Effect of Aging on the Chemical Forms and Phytotoxicity of Arsenic in Soil (비소 오염기간이 토양 내 비소의 존재형태와 식물독성에 미치는 영향)

  • Yang, Woojin;Jho, Eun Hea;Im, Jinwoo;Jeong, Seulki;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • This study investigates effects of an aging period on arsenic (As) chemical forms in soils and phytotoxicity using artificially As-contaminated soils with a range of As concentrations (0-300 mg/kg) and aging periods (0 and 3 months). A sequential extraction procedure showed that the increasing As concentration in soils increased the ratio of non-specifically and specifically bound As, which are known to be bioavailable. This resulted in increasing As uptake by tomatoes with increasing As concentration (R2=0.87 for exponential fitting); however, the seed germination was not sensitive to the As concentrations of the soil samples. The seed germination was also statistically similar in the soils with 75 and 150 mg-As/kg regardless of the aging period. The time taken until the seed germination (i.e., lag phase), on the other hand, decreased from 10 d to 3 d with aging for 3 months. This can be attributed to the decreased amount of bioavailable As with aging. Overall, this study shows that when the toxic effects of the As-contaminated soils are assessed using tomato plants, it is better to use more sensitive methods than seed germination such as the As accumulation or the lag phase for seed germination.

Comparison Study of Germination and Cooking Rate of Several Soybean Varieties (콩 품종에 따른 발아속도와 익힘속도의 비교)

  • Kim, Dong-Hee;Choi, Hee-Sook;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.94-98
    • /
    • 1990
  • Seven varieties of soybeans (Paldal, Danyeob, Jangbaek, Baegun, Jangyeobkong and 2 cultivars of Local 1 and Local 2) were investigated to compare the germination properties and cooking rate. The growth rate of soybean sprout roots was slower for larger size of soybeans. A 100% of germination was obtained for Danyeobkong and Paldalkong. Local 1 and Local 2 were lowest, 47% and 31%, respectively in germination ratio. The hardness of cooked soybeans measured by the maximum cutting force of cotyledon showed that Local 2 was softer and Danyeobkong was harder than other varieties.

  • PDF

Diaspore, seed dispersion and seed germination characteristics of two myrmecochrous spring ephemerals -Jeffersonia dubia and Corydalis remota- (개미가 종자를 산포하는 춘계단명식물 깽깽이풀과 현호색의 전파체, 종자산포 및 발아 특성)

  • Kim, Hoi-Jin;Kim, Gab-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.6
    • /
    • pp.485-491
    • /
    • 2017
  • This study examined the germination characteristics by collecting fruits and pretreatment of the diaspore from April 2014 to June 2015 to investigate the diaspore characteristics, seed dispersion, and seed germination characteristics of two myrmecochorous spring ephemerals (MCSE): -Jeffersonia dubia (Jb) and Corydalis remota (Cr)-. The diaspore of Jb was about 5mm-long yellow-dark brown, oblong seeds with the attached amorphous white elaiosome. The mean weights of diaspore, seed, and elaiosome were 15.86mg, 13.46mg, and 2.40mg, respectively, and the elaiosome ratio was 15.13%. The diaspore of Cr was about 1.2mm diameter and glossy black ovoid seeds with the attached white spatula-shaped elaiosome. The mean weights of diaspore, seed, and elaisome were 2.58mg, 2.05mg, and 0.53mg, respectively, and the elaiosome ratio was 20.54%. Camponotus niponensis and Formica japonica transported the diaspore of Jb while Formica japonica and Lasius japonicus transported the diaspore of Cr. The germination percentage of Jb seeds was statistically significant and had the significance level of 1% with the pretreatment and date of sowing. However, it was independent of attachment of elaiosome. The mean germination percentages of Jb seeds was 65.0% during sowing on June 20, 17.5% during sowing on August 19, and 0% during sowing on October 20. The germination percentage of Cr was statistically significant and had the significance level of 5% and 1% with the attachment of elaisome and date of sowing, respectively. The mean germination rates were 54.17% and 35.0% in the non-treatment section and the treatment section with elaisome detached, respectively. The mean germination percentages of Cr seeds was 75.0% during sowing on June 20, 53.75% during sowing on August 19, and 5.0% during sowing on October 20. Considering the fact that the ants transported the diaspores to the ant house when the fruits of MCSE were ripened and dropped the seeds, the direct seeding right after collecting may be most suitable to the characteristics of the evolution of these plant species and may be the best method to obtain the highest germination percentages. Since the ants distribute their seeds, the MCSE produces and attaches the elaiosome to the seed to maintain the symbiotic relationship with ants. The ants then transport the seed to the ant house where the environment is controlled for suitable temperature and humidity, and then the MCSE succeeds in germination after the embryo grows sufficiently in the next spring.