• Title/Summary/Keyword: Geothermal source heat pump systems

Search Result 65, Processing Time 0.024 seconds

Economic Evaluation on Energy System Using River Water (하천수 이용 열원시스템의 경제성 평가)

  • Lee, Chulgoo;Kim, Jongdae;Im, Taesoon;Choi, Myungsik;Pang, Seungki;Ham, Heungdon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.25-31
    • /
    • 2013
  • It has become very important for unused energy to be used for building air conditioning. Economic evaluation on energy system by using river water as a heat source, which is one of the unused energy, was carried out. The floor area of the building and the distance between heat source equipment and river was assumed $50,000m^2$ and 200 m. General heat source system using absorption chiller-heater was used for comparing to the energy saving system, and payback period method using initial cost and running cost of two systems, was used to perform economic evaluation. According to development of high capacity of water source heat pump which is appropriate for using river water, initial cost for the system has been reduced. Payback period was about 3.2 years, and this period might be shortened if nation's economic support enact.

Three-dimensional Equivalent Transient Ground Heat Exchanger Thermal Analysis Model by Considering Heating and Cooling Operations in Buildings (건물의 냉난방 운전을 고려한 3차원 동적 지중 열교환기 열해석 모델)

  • Baek, Seung Hyo
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.25-32
    • /
    • 2018
  • Application of geothermal energy in buildings has been gaining popularity as it provides the benefits of both heating and cooling a building. Among the various types of geothermal energy systems, ground-coupled heat pump system is the most commonly applied one in South Korea. A ground heat exchanger plays an important role as a heat source in winter and a heat sink in summer. For the stable operation of a ground-coupled heat pump system, a ground heat exchanger should be sized so that it provides sufficient heating and cooling energy. Heating and cooling energies generated in ground heat exchangers mainly depend on the temperature difference between the heating medium in ground heat exchangers and the surrounding ground. In addition, the performance of ground heat exchangers influences the change in ground temperature. Therefore, it is necessary to consider this interrelation between the change in the ground temperature and the performance of ground heat exchanger for an accurate estimation of its performance. However, previous thermal analysis models for ground heat exchangers are not competent enough to allow a complete understanding of this interrelation. Therefore, this study proposes a three-dimensional equivalent, transient ground heat exchanger analysis model. First, a previous thermal analysis model for ground heat exchangers, including an analytical model, a g-function, and a numerical model are analyzed. Next, to overcome the limitations of the previous models, a three-dimensional equivalent, transient ground heat exchanger model is proposed. Finally, this study validated the proposed model with the measurement data of the thermal response test, sandbox test, and TRNSYS DST model. All validation results showed a good agreement. These findings helped us to investigate the thermal performance of ground heat exchangers more accurately than the analytical models, and faster than the numerical models. Furthermore, the proposed model contributes to the design of ground heat exchangers by considering the different operation conditions of buildings.

A Review on Potential Effects of Installation and Operation of Ground Source Heat Pumps on Soil and Groundwater Environment (지열히트펌프시스템의 설치 및 운영이 토양.지하수에 미치는 영향에 대한 고찰)

  • Jo, Yun-Ju;Lee, Jin-Yong;Lim, Soo-Young;Hong, Gyeong-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.22-31
    • /
    • 2009
  • Recently use of renewable energies such as geothermal energy for space heating and cooling is increasing in Korea due to energy crisis and global warming. Ground source heat pump (GSHP) is known as one of the most environment-friendly HVAC (heating, ventilation and air-conditioning) systems in the world. However, some potential effects caused installation and operation of the GSHP systems on soil and groundwater environment are reported. The potential effects are closely related with inappropriate installation, operation and closure of the GSHP systems. In this paper, possible effects of the GSHPs on soil and groundwater environments are reviewed.

Status of Underground Thermal Energy Storage as Shallow Geothermal Energy (천부 지열에너지로서의 지하 열에너지 저장 기술 동향)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • Recently abrupt climate changes have been occurred in global and regional scales and $CO_2$ reduction technologies became an important solution for global warming. As a method of the solution shallow underground thermal energy storage (UTES) has been applied as a reliable technology in most countries developing renewable energy. The geothermal energy system using thermal source of soil, rock, and ground water in aquifer or cavern located in shallow ground is designed based on the concept of thermal energy recovery and storage. UTES technology of Korea is in early stage and consistent researches are demanded to develop environmental friendly, economical and efficient UTES systems. Aquifers in Korea are suitable for various type of ground water source heat pump system. However due to poor understanding and regulations on various UTES high efficient geothermal systems have not been developed. Therefore simple closed U-tube type geothermal heat pump systems account for more than 90% of the total geothermal system installation in Korea. To prevent becoming wide-spread of inefficient systems, UTES systems considering to the hydrogeothemal properties of the ground should be developed and installed. Also international collaboration is necessary, and continuous UTES researches can improve the efficiency of shallow geothermal systems.

Study on construction method of horizontal ground heat pump system using the building structure (건물구조체를 이용한 수평형 지열시스템의 시공법에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.139-140
    • /
    • 2013
  • Ground source heat pump systems can achieve the energy saving of building and reduce CO2 emission by utilizing stable ground temperature. However, they have many barriers such as high cost of installation, incompletion of design tool, lack of recognition as heating and cooling systems. In order to solve the problems, the building integrated geothermal system (BIGS) developed by several researches which use building foundation as a heat exchanger. In order to establish the optimum design tool of BIGS with the horizontal heat exchanger, the prediction method of ground heat exchange rate developed with numerical simulation model. In this study, the economic analysis for BIGS was conducted based on simulation results and the optimal design method was suggested. As a result, it was found that the case of 32 A, piping space 0.3 m, piping deep 0.5 m and flow rate 9.52 L/min was the best case as 50.1 W/m2 of heat exchange rate. In this case the initial cost was reduced to 115 million won.

  • PDF

A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia (몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Yoon, Kern-Sin;Lee, Tae-Yul;Kim, Hyong-Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.

Feasibility Study on Leveling Method of Electric Power Load by Applying Thermal Storage Air Conditioning System (축열식 열원시스템 적용에 의한 전력부하 평준화의 경제성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Reducing global warming potential has become important, and as one of those methods for reducing it, economic evaluation by applying ice thermal storage air conditioning system was performed. The floor area and height of the subject building was assumed $5,000m^2$ and 20 m. Absorption chillerheater system and air source heat pump system was used for comparing to the subject system, and payback period method was used to perform economic evaluation. Although the running cost of ice thermal storage system is reduced compared to two systems, the ratio is not significant compared to the increase of initial construction expenses, and payback period was calculated to be about 7.7 and 79.3 years. However, the heat storage system should be approached from the viewpoint of long term rather than the economic standard in the present standard.

A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger (수직형 지중열교환기 열전도도 측정기술에 관한 연구)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

Numerical Study of Heat Transfer Efficiency, Performace and Mechanical Behavior induced by Thermal Stress of Energy Pile (에너지 파일의 열교환 효율 및 성능, 열응력에 의한 역학적 거동 평가)

  • Min, Sun-Hong;Lee, Chul-Ho;Park, Moon-Seo;Koh, Hyung-Seon;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2010
  • The ground source heat pump system is increasingly being considered as an alternative to traditional heating and cooling systems to reduce the emission of ground house gases. In this paper, A series of numerical analysis for energy piles has been performed focusing on heat transfer efficiency, performance and thermal stress. Results of numerical analyses for the W-shape type shows more efficient heat exchange transfer than the coil type. From results of the thermo-mechanical analysis, it is shown that the concentration of thermal stress occurs around the circulating pipe and the interfaces between different materials. The largest deformation caused by thermal stress is observed in the energy pile.

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.