• Title/Summary/Keyword: Geothermal Resources

Search Result 215, Processing Time 0.022 seconds

The Evaluations of Daily Safe Yield and Influence of Hot Spring Wells (온천공에 대한 일일 적정양수량 및 영향평가)

  • Lee, Chol-Woo;Moon, Sang-Ho;Kim, Hyeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.41-47
    • /
    • 2006
  • The evaluations of daily safe yield and reciprocal influence of hot spring wells are important subjects that the specialized agencies of hot spring has to survey. The survey of hot spring had been executed by Korea Institute of Geoscience and Mineral Resources (KIGAM) prior to 1996. However, as of 2006, eight specialized agencies of hot spring are working on it and so the survey of hot spring is not consistent now. This study was carried out to analyze data from hot spring in the same way by every specialized agency. The time of residual drawdown was applied to evaluate daily safe yield because some of wells have slow recovery of drawdown. The reciprocal influence between hot spring wells was evaluated by drawdown of observation wells when a new well was pumped.

Investigation of ground thermal characteristics for performance analysis of borehole heat exchanger (지중 열교환기 성능 분석을 위한 지반 열물성 조사)

  • Shim, Byoung-Ohan;Song, Yoon-Ho;Kim, Hyoung-Chan;Cho, Byong-Wook;Park, Deok-Won;Im, Do-Hyung;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • A detailed geothermal characteristics survey with numerical simulations of the heat transfer in a site for ground source heat pump system is necessary for deploying a shallow geothermal utilization system. Density, specific heat, thermal diffusivity, and thermal conductivity are measured on 91 core samples from a 300 m deep borehole in KIGAM(Korea Institute of Geoscience and Mineral Resources). The heat flow is estimated from the thermal gradient and average thermal conductivity and the correlation between fracture system and hydraulic conductivity is analyzed. From the obtained ground information of the study site the performance of the ground heat pump system can be analyzed with some detailed numerical simulations for seasonal heat pump operation skill and optimal system design techniques.

  • PDF

A Road Map of the Unutilized Energy Technology (미활용에너지기술 중장기 Road Map)

  • Lee, Young-Soo;Park, Jun-Taek;Baik, Young-Jin;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.203-208
    • /
    • 2006
  • The unutilized energy in urban area is commercially and environmentally worth recycling since it can be used as a good energy resource for the heating and cooling supply. Therefore, once heating and cooling demands are near the available unutilized energy resources, a high performance district heating and cooling can be realized by the network of unutilized energy technology. In relation to this circumstance, a road map of the unutilized energy technology is presented in this study.

  • PDF

A Study on the Yearly Measurement and Numerical Analysis of Underground Temperature (년간 지중온도의 실측 및 수치해석에 관한 연구)

  • Shin, Y.H.;Tanshen, Md. Riyad;Chung, H.C.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • The geothermal energy is one of the renewable energy sources which can contribute in accomplishing a vision and goal of the national plan on energy for a government suggestion. Especially, the geothermal energy is evaluated as the nearly unlimited resources. The yearly underground temperature distribution by depth is very important to the design of air-conditioning system which uses a geothermal energy. Furthermore, there has no data for comparisons to numerical analysis. In this study, the yearly underground temperature is measured under the depth of 2 m in Tongyeong, and these data are compared with numerical analysis results for checking the accuracy. The results showed that the experimental temperature and numerical results had a good agreements and these results will be utilized to predict a performance of air-conditioning system for using a geothermal energy.

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.

Imaging Fractures by using VSP Data on Geothermal Site (지열지대 VSP 자료를 이용한 파쇄대 영상화 연구)

  • Lee, Sang-Min;Byun, Joong-Moo;Song, Ho-Cheol;Park, Kwon-Gyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Attention has been focused on geothermal energy as an alternative energy because it is continuously operable without external supply. Most of geothermal anomalies in Korea are related to deep circulation of groundwater through a fracture system in granite area. Therefore it is very important to understand the distribution of the fracture system which is the main channel of ground water. In this research, we constructed the velocity models with a fracture system and the layered sediments, respectively, and generated synthetic data sets with them to verify the presented vertical seismic profiling (VSP) preprocessing scheme. We compared the results from conventional VSP preprocessing flow to those from VSP preprocessing flow considering fracture system. We noticed that the preprocessing flow considering fracture system retains more sufficient signal including down-going wave than conventional preprocessing. In addition, we applied 3D VSP prestack phase screen migration to the preprocessed reversed VSP (RVSP) data from Seokmo Island so that we were able to image fracture structure of the geothermal site in Seokmo Island.

An efficient 3D inversion of magnetotelluric data

  • Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.261-266
    • /
    • 2007
  • An efficient three-dimensional (3D) inversion of magnetotelluric (MT) data can be carried out by using approximate sensitivities or avoiding the calculation of a full sensitivity matrix. In this paper, we propose approximate sensitivities for efficient 3D MT inversion based on the Gauss-Newton method and test and compare four kinds of sensitivities. Applying the four sensitivities to both synthetic and field data shows that the effects of sensitivities are highly dependent on data and thus applying various combinations of sensitivities is recommended for efficient inversion and good images.

  • PDF

Occurrences of Hot Spring and Potential for Epithermal Type Mineralization in Main Ethiopian Rift Valley (주 에티오피아 열곡대 내 온천수의 산출특성 및 천열수형 광상의 부존 잠재성)

  • Moon, Dong-Hyeok;Kim, Eui-Jun;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.267-278
    • /
    • 2013
  • The East African Rift System(EARS) is known to be hosted epithermal Au-Ag deposits, and the best-known example is Main Ethiopian Rift Valley(MER) related to Quaternary bimodal volcanism. Large horst-graben system during rifting provides open space for emplacement of bimodal magmas and flow channel of geothermal fluids. In recent, large hydrothermally altered zones(Shala, Langano, and Allalobeda) and hot spring related to deeply circulating geothermal water have been increasing their importance due to new discoveries in MER and Danakil depression. The hot springs in Shala and Allalobeda occur as boiling pool and geyser on the surface, whereas some areas didn't observe them due to decreasing ground water table. The host rocks are altered to quartz, kaolinite, illite, smectite, and chlorite due to interaction with rising geothermal water. The hot springs in MER are neutral to slightly alkaline pH(7.88~8.83) and mostly classified into $HCO_3{^-}$ type geothermal water. They are strongly depleted in Au, and Ag, but show a higher Se concentration of up to 26.7 ppm. In contrast, siliceous altered rocks around hot springs are strongly enriched in Pb(up to 33 ppm, Shala), Zn(up to 313 ppm, Shala), Cu(up to 53.1 ppm, Demaegona), and Mn(up to 0.18 wt%t, Shala). In conclusion, anomalous Se in hot spring water, Pb, Zn, Cu, and Mn in siliceous altered rocks, and new discoveries in MER have been increasing potential for epithermal gold mineralization.

Interpretation of Geophysical Well Logs from Deep Geothermal Borehole in Pohang (포항 심부 지열 시추공에 대한 물리검층 자료해석)

  • Hwang, Se-Ho;Park, In-Hwa;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.332-344
    • /
    • 2007
  • Various geophysical well logs have been made along the four deep wells in Pohang, Gyeongbuk. The primary focus of geophysical well loggings was to improve understanding the subsurface geologic structure, to evaluate in situ physical properties, and to estimate aquifer production zones using fluid temperature and conductivity gradient logs. Especially natural gamma logs interpreted with core logs of borehole BH-1 were useful to discriminate the lithology and to determine the lithologic sequences and boundaries consisting of semi-consolidated Tertiary sediments and intrusive rocks such as basic dyke and Cretaceous sediments. Cross-plot of physical properties inferred from geophysical well logs were used to identify rock types such as Cretaceous sandstone and mudstone, Tertiary sediments, rhyolite, and basic dyke. The temperature log indicated $82.51^{\circ}C$ at the depth of 1,981.3 meters in borehole BH-4. However, considering the temperature of borehole BH-2 measured under stable condition, we expect the temperature at the depth in borehole BH-4, if it is measured in stable condition, to be about 5 or $6^{\circ}C$ higher. Several permeable fractures also have been identified from temperature and conductivity gradient logs, and cutting logs.