• Title/Summary/Keyword: Geotechnical survey

Search Result 277, Processing Time 0.025 seconds

Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel

  • Wu, He-Gao;Zhou, Li;Su, Kai;Zhou, Ya-Feng;Wen, Xi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • The reinforced concrete lining of hydraulic pressure tunnels tends to crack under high inner water pressure (IWP), which results in the inner water exosmosis along cracks and involves typical hydro-mechanical interaction. This study aims at the development, validation and application of an indirect-coupled method to simulate the lining cracking process. Based on the concrete damage plasticity (CDP) model, the utility routine GETVRM and the user subroutine USDFLD in the finite element code ABAQUS is employed to calculate and adjust the secondary hydraulic conductivity according to the material damage and the plastic volume strain. The friction-contact method (FCM) is introduced to track the lining-rock interface behavior. Compared with the traditional node-shared method (NSM) model, the FCM model is more feasible to simulate the lining cracking process. The number of cracks and the reinforcement stress can be significantly reduced, which matches well with the observed results in engineering practices. Moreover, the damage evolution of reinforced concrete lining can be effectively slowed down. This numerical method provides an insight into the cracking process of reinforced concrete lining in hydraulic pressure tunnels.

Subsurface Investigation of Dokdo Island using Geophysical Methods (물리탐사기법의 독도 지반조사 적용)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.335-342
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface, along with rock physical property measurements in Dokdo island. The survey results in Seodo island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction, and that Bedded Lapilli Tuff in the downstream was more severely influenced by weathering and erosion than Trachy Andesite II in the upstream of the survey area. In Dongdo island, Trachy Andesite III and Scoria Bedded Lapilli Tuff were severely weathered and eroded, considered as weathered to soft rock formations, and their weathered zone becomes thicker towards the antiaircraft facility in the NE direction of the survey area. The study results also illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Stratified Ash Tuff is the most soft rock in Dokdo island.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

Non-Destructive Precise Electromagnetic Surveying for the Deep Underground Utilities (고심도 지중매설물의 지하측랑을 위한 비파괴 정밀 전자측량)

  • 손호웅;이강원;김형수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.109-121
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechlical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.

Correlation Analysis of Sewer Integrity and Ground Subsidence (하수관로 건전도와 도로함몰 발생 상관관계 분석)

  • Kim, Jinyoung;Kang, Jaemo;Choi, Changho;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2017
  • In recent years, the increasing trend of ground subsidence in major cities has caused social problems. Aged sewer pipeline as a main attribute for the subsidence is simply replaced and maintained according to a survey result with related to its buried period. However, other attributes and risk analysis for the subsidence have not been well studied yet. In this point, this study proposed various environmental and structural attributes with related to sewer pipelines and, then, a method of ground subsidence risk evaluation with a certain level of reliability. In order to find effective attributes to ground subsidence near to sewer, the nearest sewerage data were extracted at the location of subsidence in the City of Seoul, and a level of correlation was analyzed between subsidence and individual attribute. The effective weight factors for the proposed attributes was estimated through AHP analysis and its applicability was verified by comparing the actual subsidence data to the risk evaluation in the pilot study district of Seoul.

Sampling Bias of Discontinuity Orientation Measurements for Rock Slope Design in Linear Sampling Technique : A Case Study of Rock Slopes in Western North Carolina (선형 측정 기법에 의해 발생하는 불연속면 방향성의 왜곡 : 서부 North Carolina의 암반 사면에서의 예)

  • 박혁진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.145-155
    • /
    • 2000
  • Orientation data of discontinuities are of paramount importance for rock slope stability studies because they control the possibility of unstable conditions or excessive deformation. Most orientation data are collected by using linear sampling techniques, such as borehole fracture mapping and the detailed scanline method (outcrop mapping). However, these data, acquired by the above linear sampling techniques, are subjected to bias, owing to the orientation of the sampling line. Even though a weighting factor is applied to orientation data in order to reduce this bias, the bias will not be significantly reduced when certain sampling orientations are involved. That is, if the linear sampling orientation nearly parallels the discontinuity orientation, most discontinuities orientation data which are parallel to sampling line will be excluded from the survey result. This phenomenon can cause serious misinterpretation of discontinuity orientation data because critical information is omitted. In the case study, orientation data collected by using the borehole fracture mapping method (vertical scanline) were compared to those based on orientation data from the detailed scanline method (horizontal scanline). Differences in results for the two procedures revealed a concern that a representative orientation of discontinuities was not accomplished. Equal-area, polar stereo nets were used to determine the distribution of dip angles and to compare the data distribution fur the borehole method versus those for the scanline method.

  • PDF

Application of geophysical exploration for gold in the YongJang mine, Masan (마산 용장광산에서 금광에 대한 물리탐사의 적용)

  • Park, Jong-Oh;Song, Moo-Young;Park, Chung-Hwa;You, Young-June
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.213-219
    • /
    • 2006
  • The Yongjang mine is located in Masan City, Gyeongsangnamdo, which consists of a black shale possessing quartzite veins with othercompositions such as gold, silver, and sublimated sulfur. The average width of the veins is $9{\sim}17cm$ and the average degrees of the gold and silver are 3.6 g/t and 113.6 g/t respectively. A regional and a detailed scale electrical resistivity surveys are conducted to determine the existence of the mineralization zones and the linear structures in the study area. In addition, surveys of a several different array methods are conducted such as dipole-dipole array in the surface and borehole-to-surface array, surface-to-borehole array, and dipole-dipole array in the borehole. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Yongjang vein is extended longer under the subsurface than on the surface in the images reconstructed from the 3D inversion. Therefore, it is recognized that the 3-D interpretation of the electrical resistivity survey is a very useful method to figure out the existence of strike and extension direction because the mineralization zones and the linear structures are shown in each depth.

  • PDF

Application of Seismic Tomography to the Inverstigation of Underground Structure in Gupo Train Accident Area (구포 기차 전복사고 지역의 지반상태 파악을 위한 탄성파 토모그래피 응용)

  • 김중열;장현삼;김유성;현혜자;김기석
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1995
  • A train overturn accident occurred on March 1993 in the Gupo area, northern part of Pusan, unfortunately had taken a heavy toll of lives and caused a great loss of property as well. The reasons for the subsidence of the basement under the railroads, which presumed to be the main cause of the accident, have been investigated from many different angles, including conventional geotechnical investigation methods. The deduced nuin reasons of the subsidence were: 1. blasting for tunnel excavation (NATM) at about 39 meter under the railroads, and 2. unexpected change of bedrock conditions along the direction of tunnel. But this accident was derived nrranlv from the lack of geological and geotechnical information under railroad area because it was impossible to drill beneath the railroads. This paper introduces a new geophysical survey techniqueseisrnic geotomography, and shows some results of the method applying to investigate the underground structure of the accident area. This method not only overcomes the unfavourable environment which many conventional investigation methods cannot face, but produces an image of underground structure with high resolution. Furthermore, the outputs from geotomogaphic analysis could provide very valuable in-situ basic parameters (like seismic velocities, elastic moduli, etc.) which is essential to the design and construction.

  • PDF