• Title/Summary/Keyword: Geotechnical risk

Search Result 184, Processing Time 0.024 seconds

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Domestic and Overseas TBM Production Specification and Professional Training Program (국내외 TBM 제작 사양 및 전문인력 양성 프로그램 분석)

  • Kim, Ki-Hwan;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa;Jeong, Yun-Young;Kim, Hyouk
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.281-291
    • /
    • 2019
  • In Overseas case, most tunnels in under are or through the river are constructed with shield TBM and the manufacturer orders of related equipment suitable for the project are mode. Accordingly, the client provides the specifications required for the equipment manufacture. In addition, TBM equipment has been operated by those who have completed the expert training program, which for minimizing the risk of equipment operation in construction field corresponding to the mechanized construction. However, in Korea, such a system related to above the program and specifications has not yet been built, which is causing a lot of difficulties in construction field. Therefore, this study investigated the differences in bidding guides provided by mechanized construction in domestic and abroad, and the professional education programs for expert training being conducted from overseas. Futhermore, we will propose the guidelines of essential equipment specification contained in domestic bidding and provide the necessary manual for the professional education program for TBM as the mechanized construction method.

Development of Probabilistic Flood Risk Map Considering Uncertainty of Levee Break (하천제방 붕괴의 불확실성을 고려한 확률론적 홍수위험지도 개발)

  • Nam, Myeong-Jun;Lee, Jae-Young;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, probabilistic flood risk maps were produced for levee break caused by possible flood scenarios. The results of the previous studies were employed for flood stages corresponding to hydrological extreme event quantified uncertainties and then predicted the location of a levee breach. The breach width was estimated by combining empirical equation considered constant width and numerical modeling considered uncertainties on compound geotechnical component. Accordingly, probabilistic breach outflow was computed and probabilistic inundation map was produced by 100 runs of 2D inundation simulation based on reliability analysis. The final probabilistic flood risk map was produced by combining probabilistic inundation map based on flood hazard mapping methodology. The outcomes of the study would be effective in establishing specified emergency actin plan (EAP) and expect to suggest more economical and stable design index.

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.

Correlation Analysis of Sewer Integrity and Ground Subsidence (하수관로 건전도와 도로함몰 발생 상관관계 분석)

  • Kim, Jinyoung;Kang, Jaemo;Choi, Changho;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2017
  • In recent years, the increasing trend of ground subsidence in major cities has caused social problems. Aged sewer pipeline as a main attribute for the subsidence is simply replaced and maintained according to a survey result with related to its buried period. However, other attributes and risk analysis for the subsidence have not been well studied yet. In this point, this study proposed various environmental and structural attributes with related to sewer pipelines and, then, a method of ground subsidence risk evaluation with a certain level of reliability. In order to find effective attributes to ground subsidence near to sewer, the nearest sewerage data were extracted at the location of subsidence in the City of Seoul, and a level of correlation was analyzed between subsidence and individual attribute. The effective weight factors for the proposed attributes was estimated through AHP analysis and its applicability was verified by comparing the actual subsidence data to the risk evaluation in the pilot study district of Seoul.

A Study on the Optimization Algorithm for Correlation Analysis of the Underground Utility Structure Density in Urban Areas and Recorded Ground Subsidence (도심지 지중매설물 밀집도와 이력지반함몰의 상관성 분석을 위한 최적화 알고리즘에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha;Kang, Jae Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.77-87
    • /
    • 2021
  • Several studies have been conducted to analyze, predict, and prevent the risk of ground subsidence occurring in urban areas. Nevertheless, there is insufficient research effort on risk analysis that utilizes the correlation between the density of underground structures (i.e., the spatial quantity of buried objects installed in the ground around the interested area) and the occurrence of ground subsidence. In this paper, a study was conducted to analyze the line density of underground structures using GIS-based spatial information data, and to link this with the recorded ground subsidences. An optimization algorithm was developed to maximize the correlation between the line density of 29 recorded ground subsidences and 6 types of underground structures that occurred between 2010 and 2015 for the analysis area. The concept of normalized line density was also proposed for the analysis. The normalized line density of the analysis area was divided into five grades (Grade 1: lowest, Grade 5: highest). When the optimization algorithm was applied, the case where the normalized line density was Grade 4 or higher at the location of the recorded ground subsidences was about > 80%. It is thought that the density analysis result of underground facilities can be applied to the ground subsidence risk analysis by using the proposed optimization algorithm.

Reliability Analysis of Axially Loaded Large-scale Pile Foundations (대형말뚝기초의 축하중 거동에 대한 수치해석기반 신뢰성 해석)

  • Huh, Jung-Won;Park, Jae-Hyun;Lee, Ju-Hyung;Ha, Sung-Han;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.17-22
    • /
    • 2009
  • Reliability analyses were performed to quantify the risk in axially loaded large-scale pile foundations in consideration of pile-soil interaction and uncertainties on various design variables. The finite difference method based on an equivalent soil spring model and a load transfer method and Monte Carlo simulation method are integrated in the framework of reliabilty analysis. The applicability and efficiency of the proposed method in the safety assessment of axially loaded pile-soil system was verified using a realistic example. Since the proposed method can explicitly consider uncertainties in various design variables, and quantify failure probability of a pile foundation, it can be used to estimate risk, to obtain basic informations for life cycle cost analysis, and to develop code requirements for a reliability-based design of pile foundations.

  • PDF

A Proposal for Risk Evaluation Method of Slope Failure due to Rainfalls (강우 시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, Jong-Gil;Jung, Min-Su;Tori, Nobuyaki;Okimura, Takashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.893-903
    • /
    • 2008
  • A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.

  • PDF

GIS-based Subsidence Hazard Map in Urban Area (GIS 기반의 도심지 지반침하지도 작성 사례)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jin-Woo;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

A Study on Monitoring Surface Displacement Using SAR Data from Satellite to Aid Underground Construction in Urban Areas (위성 SAR 자료를 활용한 도심지 지하 교통 인프라 건설에 따른 지표 변위 모니터링 적용성 연구)

  • Woo-Seok Kim;Sung-Pil Hwang;Wan-Kyu Yoo;Norikazu Shimizu;Chang-Yong Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • The construction of underground infrastructure is garnering growing increasing research attention owing to population concentration and infrastructure overcrowding in urban areas. An important associated task is establishing a monitoring system to evaluate stability during infrastructure construction and operation, which relies on developing techniques for ground investigation that can evaluate ground stability, verify design validity, predict risk, facilitate safe operation management, and reduce construction costs. The method proposed here uses satellite imaging in a cost-effective and accurate ground investigation technique that can be applied over a wide area during the construction and operation of infrastructure. In this study, analysis was performed using Synthetic Aperture Radar (SAR) data with the time-series radar interferometric technique to observe surface displacement during the construction of urban underground roads. As a result, it was confirmed that continuous surface displacement was occurring at some locations. In the future, comparing and analyzing on-site measurement data with the points of interest would aid in confirming whether displacement occurs due to tunnel excavation and assist in estimating the extent of excavation impact zones.