• Title/Summary/Keyword: Geosynthetic Clay Liner(GCL)

Search Result 14, Processing Time 0.018 seconds

The Effect of Water on the Interface Shear Strength between Geosynthetics (물이 토목섬유 사이의 접촉 전단강도에 미치는 영향)

  • 서민우;박준범;박인준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.321-328
    • /
    • 2002
  • Various geosynthetics used as liners or the Protection layers are installed in the solid waste landfill. The interface shear strength between geosynthetics installed at the slope of the landfill is a very important variable for the safe design of bottom and cover systems in the solid waste landfill. The interface shear strengths between (1) Geomembrane(GM)/Geotexile(GT) and (2) Geomembrane(GM)/Geosynthetic Clay Liner(GCL) were estimated by a large direct shear test in this study and were evaluated by the Mohr-Coulomb failure criterion. Especially, this research is focused on the effect of water which exists between geosynthetics because interfaces become easily wet or hydrated by rain, leachate and groundwater beneath liners. The strength reduction at large displacement and the effects of the magnitude of normal stresses and GCL hydration methods also investigated. The test results showed that the interface shear strength and shear behavior varied depending upon the magnitude of normal stresses, water at the interface, and hydration methods. Summary of secant friction angles, which could be used as reference values at a site where similar geosynthetics are installed, together with normal stress and hydration condition are presented.

  • PDF

Development of Strain-softening Modeling for Interfaces between Geosynthetics (토목섬유 interface의 변형율 연화 모델 개발)

  • Seo, Min-Woo;Park, Jun-Boum;Park, Inn-Joon;Cho, Nam-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.57-68
    • /
    • 2003
  • Strain-softening model is developed to characterize the interface behavior of geomembrane with geotextile and geosynthetic clay liner(GCL). The model proposed in this research is calibrated by using data from direct shear tests conducted on smooth and textured geomembrane. The research is divided into two regions, pre-peak and post-peak, to take into account of strain-softening effect. Although slight difference between measured and back calculated data is observed under high normal stress, good agreements, in general, are found from back calculations. Especially, good consistency is observed in the case of low normal stress. Based on the results, it can be concluded that the proposed model can be a reasonable constitutive law to figure out the behavior of strain-softening between interfaces of geomembrane. In addition, DSC(Disturbed State Concept) model is also presented for further application in geosynthetic interfaces.

  • PDF

Dependency of Compatibility Termination Criteria on Prehydration and Bentonite Quality for Geosynthetic Clay Liners (사전투수 및 벤토나이트 품질에 따른 GCL의 투수종결기준에 미치는 영향평가)

  • Lee Jae-Myung;Shackelford Charles D.;Choi Jae-Soon;Jung Moon-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.141-158
    • /
    • 2004
  • The dependency of criteria used to terminate compatibility tests on the prehydration and quality of bentonite in geosynthetic clay liners (GCLs) is evaluated based on permeation with chemical solutions containing 5, 10, 20, 50, and 100 mM calcium chloride ($CaCl_2$). The hydraulic conductivity tests are not terminated before chemical equilibrium between the effluent and the influent chemistry has been established, resulting in test durations ranging from < 1 day to > 900 days, with longer test durations associated with lower $CaCl_2$ concentrations. The evaluation includes both physical termination criteria (i.e., volumetric flow ratio and steady hydraulic conductivity based on ASTM D 5084, ${\ge}2$ pore volumes of flow, constant thickness of specimen) and chemical termination criteria requiring equilibrium between influent and effluent chemistry (viz., electrical conductivity, pH, and $Ca^{2+}\;and\;Cl^-$ concentrations). For specimens permeated with 5, 10, and 20 mM $CaCl_2$ solutions, only the criterion based on chemical equilibrium in $Ca^{2+}$ concentration correlates well with equilibrium in hydraulic conductivity, regardless of prehydration or quality of bentonite. However, all of the termination criteria, except for the volumetric flow ratio and 2 pore volumes of flow for the prehydrated specimens, correlate well with equilibrium in hydraulic conductivity regardless of prehydration or quality of bentonite when permeated with 50 and 100 mM $CaCl_2$ solutions. The results illustrate the uniqueness of the termination criterion based on solute concentration equilibrium between the effluent and the influent with respect to both prehydration and quality of bentonite in the GCLs.

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.