• Title/Summary/Keyword: Geostatistical method

Search Result 93, Processing Time 0.027 seconds

A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization (지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.

Geostatistical Fusion of Spectral and Spatial Information in Remote Sensing Data Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.399-401
    • /
    • 2003
  • This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.

  • PDF

Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation (지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가)

  • Kim, Ho-Rim;Kim, Kyoung-Ho;Yun, Seong-Taek;Hwang, Sang-Il;Kim, Hyeong-Don;Lee, Gun-Taek;Kim, Young-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

A Study on Geostatistical Simulation Technique for the Uncertainty Modeling of RMR (RMR의 불확실성 모델링을 위한 지구통계학적 시뮬레이션 기법에 관한 연구)

  • 류동우;김택곤;허종석
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.87-99
    • /
    • 2003
  • Geostatistics is defined as the theory of modeling of regionalized variables and is an efficient and elegant methodology for estimation and uncertainty evaluation from limited spatial sample data. In this study, we have made a theoretical comparison between kriging estimation and geostatistical simulation methods. Kriging methods do not preserve the histogram of original data nor their spatial structure, and also provide only an incomplete measure of uncertainty when compared to the simulation methods. A practical procedure of geostatistical simulation is suggested in this study and the technique is demonstrated through an application, in which it was used to identify the spatial distribution of RMR as well as to evaluate the spatial uncertainty. It is concluded that the geostatistical simulation is the appropriate method to quantify the spatial uncertainty of geotechnical variables such as RMA. Therefore, the results from the simulation can be used as useful information for designer's considerations in decision-making under various geological conditions as well as the related terms of contract.

AN ESTIMATION METHOD FOR GROUNDWATER ELEVATION

  • Cho, Choon-Kyung;Kang, Sung-Won
    • Communications of Mathematical Education
    • /
    • v.5
    • /
    • pp.493-502
    • /
    • 1997
  • An estimation method for groundwater level elevations is introduced. Using geostatistical techniques and anisotropies, experimental variograms show significant improved correlations compared with those from conventional techniques.

  • PDF

The analysis of groundwater table variations in Sylhet region, Bangladesh

  • Zafor, Md. Abu;Alam, Md. Jahir Bin;Rahman, Md. Azizur;Amin, Mohammad Nurul
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.369-376
    • /
    • 2017
  • The trend analysis of the study was acquired by selecting multiyear monthly groundwater table data and monitors the wells in each sub-district under the study area. The intention of this research was to analyze the outcome of the non-parametric Mann-Kendall test at greater than the significance level which is 95% of groundwater level in Sylhet. The aptitude is effective at two conjunctures where the confidence bounds are 95% and it meets the estimate line of Sen's. To calculate and assess the spatial differences in the inanition of groundwater table, geostatistical methods was applied based on data from 27 groundwater wells during the period from January 1975 to December 2011 which were obtained from a secondary source, Bangladesh Water Development Board. The geographic information system was used to assess the spatial change in order to find the level of groundwater. Cross-validation errors were found within an advisable level in estimating the groundwater depth with different interpolation models of ordinary kriging methods. Finally, surface maps were generated with the best-fitted model. The southeast region was found highly vulnerable from groundwater level point of view. Northern region was detected highest hazard prone area for diverge groundwater using kriging method.

Downscaling of Geophysical Data for Enhanced Resolution by Geostatistical Approach (물리탐사 자료의 해상도 향상을 위한 지구통계학적 다운스케일링)

  • Oh, Seok-Hoon;Han, Seong-Mi
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.681-690
    • /
    • 2010
  • Inversion result of geophysical data given as a block type was geostatistically simulated with borehole observation given as a point type and was applied to the rock classifying map. The geophysical data generally involved secondary information for the target material and were obtained for overall region. In contrast, borehole data provided direct information for the target material, but tended to be effective only for a narrow range of region and were dealt as a point type. Integrated simulation or kriging interpolation of these two different kinds of information required the covariance for point-point, point-block and block-block. Using the Bssim module included in SGeMS software, integrated result of geophysical data and borehole data were obtained. The results were then compared with the method of geostatistical inversion proposed by authors. Downscaling method used in this study showed relatively more flexible than the geostatistical inversion.

Geostatistical analyses and spatial distribution patterns of tundra vegetation in Council, Alaska

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.53-60
    • /
    • 2014
  • The arctic tundra is an important ecosystem in terms of the organic carbon cycle and climate change, and therefore, detailed analysis of vegetation distribution patterns is required to determine their association. We used grid-sampling method and applied geostatistics to analyze spatial variability and patterns of vegetation within a two-dimensional space, and calculated the Moran's I statistics and semivariance to assess the spatial autocorrelation of vegetation. Spatially autocorrelated vegetation consisted of moss, Eriophorum vaginatum, Betula nana, and Rubus chamaemorus. Interpolation maps and cross-correlograms revealed spatial specificity of Carex aquatilis and a strong negative spatial correlation between E. vaginatum and C. aquatilis. These results suggest differences between the species in water requirements for survival in the arctic tundra. Geostatistical methods could offer valuable information for identifying the vegetation spatial distribution.

Interpolation of Missing Groundwater-Level Data at the National Groundwater Monitoring Wells (장기 관측 지하수위 결측자료 보완)

  • 정상용;심병완;강동환;원종호;김규범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.15-22
    • /
    • 2000
  • Long ranged groundwater-level data often have the missing intervals because of the trouble of monitoring systems at the national groundwater monitoring wells. Geostatistical methods are very useful for the supplement of the missing data. Ordinary kriging was applied for the interpolation of the missing groundwater-level data with a smooth sinusoidal variation. Conditional simulation was used for the reproduction of the missing data with high fluctuations. Two geostatistical methods produced the very accurate estimates at the missing intervals and reproduced their original variations. This fact is proved by the cross validation test and graphical method, respectively.

  • PDF