• Title/Summary/Keyword: Geostationary Satellite Launch Vehicle

Search Result 13, Processing Time 0.017 seconds

EMC Compatability Analysis on Geostationary Satellite (정지궤도 인공위성의 전자파 호환성 해석)

  • Chae, Tae-Byeong;Oh, Seung-Hyeub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1207-1215
    • /
    • 2008
  • Satellite generates a complex electromagnetic noise by conducted and radiated coupling effect of the various electrical instruments. This noise may cause serious problems on the satellite system. To minimize the electromagnetic coupling effects and maintain the system safety margin, system noise reduction technique should be applied from the beginning of the system design. The COMS system is evaluated by measuring the conducted noise on system electrical power leads at PSR(Power Supply Regulator) and verifying a 6 dB system safety margin under the complex noise environment with current injection. The radiated noise due to the complex transmit antenna configuration is evaluated by integrating all unit-level RE measurement results, and the RF compatibility between spacecraft and launch vehicle is analyzed with the above estimations. This paper describes the COMS EMC compatibility analysis with respect to each unit level EMC test results, and RF compatibility analysis between spacecraft and launch vehicle. The analyzed results will be reflected on FM(Flight Model) EMC test.

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.79-87
    • /
    • 2017
  • Korea Aerospace Research Institute has being developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducted Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is open cycle engine using a gas-generator. The SCCR engine with closed cycle is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted. Afterward engine-shaped SCCR engine model (TDM1) is being designed and developed for the next combustion test.

  • PDF

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.109-118
    • /
    • 2018
  • Korea Aerospace Research Institute has developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducting a Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is an open cycle engine using a gas-generator. The SCCR engine with a closed cycle engine is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted.