• Title/Summary/Keyword: Geostationary

Search Result 579, Processing Time 0.035 seconds

Application of real-time satellite based DCS (Data Collection System) in the ocean and fisheries (해양 ${\cdot}$ 수산에 대한 DCS기반 실시간 위성중계수집 시스템의 활용)

  • Yoon, Hong-Joo;Suh, Young-Sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.344-351
    • /
    • 2005
  • It was discussed to satellite based DCS (NOAA, Orbcomm, ADEOS-II, CBERS in polar satellite and GMS, GOES, METEOSAT, INSAT, FY-2 in geostationary satellite) with PTT (Platform Transmitter Terminal) and DCP (Data collection Platform) in order to application of real-time DCS (Data Collection System) in the ocean and fisheries. For covering ocean data link area in the eastern hemisphere, it was proposed to take DCS on the Korean geostationary satellite in the marine environments.

  • PDF

A Study on Optimized Thermal Analysis Modeling for Thermal Design Verification of a Geostationary Satellite Electronic Equipment (정지궤도위성 전장품의 열설계 검증을 위한 최적 열해석 모델링 연구)

  • Jun Hyoung Yoll;Yang Koon-Ho;Kim Jung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-536
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts, or semi-empirical heat dissipation method, is developed for thermal design and analysis an electronic equipment of geostationary satellite. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU (Command and Telemetry Unit) and verified by thermal cycling and vacuum tests.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

Simulation and Design of Optimized Three-Layer Radiation Shielding to Protect Electronic Boards of Satellite Revolving in Geostationary Earth Orbit (GEO) Orbit against Proton Beams

  • Ali Alizadeh;Gohar Rastegarzadeh
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • The safety of electronic components used in aerospace systems against cosmic rays is one of the most important requirements in their design and construction (especially satellites). In this work, by calculating the dose caused by proton beams in geostationary Earth orbit (GEO) orbit using the MCNPX Monte Carlo code and the MULLASSIS code, the effect of different structures in the protection of cosmic rays has been evaluated. A multi-layer radiation shield composed of aluminum, water and polyethylene was designed and its performance was compared with shielding made of aluminum alone. The results show that the absorbed dose by the simulated protective layers has increased by 35.3% and 44.1% for two-layer (aluminum, polyethylene) and three-layer (aluminum, water, polyethylene) protection respectively, and it is effective in the protection of electronic components. In addition to that, by replacing the multi-layer shield instead of the conventional aluminum shield, the mass reduction percentage will be 38.88 and 39.69, respectively, for the two-layer and three-layer shield compared to the aluminum shield.

Study on the Advanced S-band Telecommand and Telemetry Formats for the Geostationary Orbit Satellites Operation (정지궤도위성 운영을 위한 향상된 S-band 원격명령어 및 원격측정데이터 포맷에 대한 연구)

  • Lee, Nayoung;Shin, Hyun-Kyu;Cheon, Yee-Jin;Choi, Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.417-424
    • /
    • 2021
  • The S-band telemetry and telecommand formats for geostationary orbit satellites should have sufficient reliability, since they transmit massive satellite health data and receive the mission commands in the 36,000km of the geostationary orbit. Also, they have to efficiently manage the large quantity of satellite health data under the limited data transmission rate. Cheollian-2A and 2B satellites were developed by Korea Aerospace Research Institute and launched at 2018 and 2020, respectively. Their missions are to conduct continuously the mission of Cheollian-1, which was the first geostationary orbit satellite of Korea. Therefore, the fundamental S-band data format design for Cheollian-2A and 2B should meet the requirements of Cheollian-1. Meanwhile the latest remote data processing techniques for these newest geostationary orbit satellites should be implemented. In this paper, the advanced S-band space data formats and management methods are proposed for more efficient data transmission, reception and operation with the limited data rate of the geostationary orbit satellites. The implemented results in the flight software of Cheollian-2A and 2B are described in detail.

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

A Study on the Sharing Criteria Between NGSO/FSS and HDFS (NGSO/FSS와 HDFS간 공유 기준에 관한 연구)

  • 강병수;권태곤;이성팔
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.465-468
    • /
    • 2000
  • The interference situation for the satellite networks using non-geostationary satellite orbit (NGSO) is more complicated than the situation between geostationary satellite orbit (GSO) networks because of the time varying orbital characteristics of NGSO systems. Most of frequency bands are allocated to fixed-satellite service and liked-service in co-primary basis. In this paper, the sharing criteria between NGSO/FSS systems and HDFS (High Density Fixed-Service) are examined.

  • PDF

A STUDY ON FUEL ESTIMATION ALGORITHMS FOR A GEOSTATIONARY COMMUNICATION & BROADCASTING SATELLITE

  • Eun, Jeong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.249-256
    • /
    • 2000
  • It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  • PDF

Development Trend of Geostationary Environment Monitoring Payloads (환경감시용 정지궤도위성 탑재센서 개발동향)

  • Lee, Seung-Hoon;Kim, Sung-Kyu;Yeon, Jeoung-Heum;Kim, Seong-Hui;Ko, Dai-Ho;Yong, Sang-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2010
  • Environment and climate changes affect all aspects of our society. The enhanced remote sensing technology made the satellite to be widely used in the environment monitoring applications. Geostationary environmental monitoring is also actively researched due to the increased needs for the monitoring of diurnal environmental changes, troposhperic pollution and its origin. In this paper, recent development trends of geostationary environment monitoring payloads are introduced. GEO-CAFE and GIFTS missions are researched by the leading of the NASA and Sentinel-4 by the ESA. Those missions are in the state of detailed conceptual design and hardware development preparing with the launch plan in the late 2010s. By considering these development trends, domestic environment monitoring payloads shall be developed with careful analysis on the mission and data application.

  • PDF

Systemic Ground-Segment Development for the Geostationary Ocean Color Imager II, GOCI-II (정지궤도 해양관측위성 지상시스템 개발)

  • Han, Hee-Jeong;Yang, Hyun;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.171-176
    • /
    • 2017
  • Recently, several information-technology research projects such as those for high-performance computing, the cloud service, and the DevOps methodology have been advanced to develop the efficiency of satellite data-processing systems. In March 2019, the Geostationary Ocean Color Imager II (GOCI-II) will be launched for its predictive capability regarding marine disasters and the management of the fishery environment; moreover, the GOCI-II Ground Segment (G2GS) system for data acquisition/processing/storing/distribution is being designed at the Korea Ocean Satellite Center (KOSC). The G2GS is composed of the following six functional subsystems: data-acquisition subsystem (DAS), data-correction subsystem (DCS), precision-correction subsystem (PCS), ocean data-processing subsystem (ODPS), data-management subsystem (DMS), and operation and quality management subsystem (OQMS). The G2GS will enable the real-time support of the GOCI-II ocean-color data for government-related organizations and public users.