• Title/Summary/Keyword: Geospatial Data Model

Search Result 310, Processing Time 0.025 seconds

Applications of LiDAR in Cadastral Surveying (지적측량에 라이다 측량기술의 활용방안)

  • Kang, Joon-Mook;Min, Kwan-Sik;Wie, Gwang-Jae;Kim, Jae-Myoung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.443-446
    • /
    • 2007
  • The major purpose of the present study is to gauge the general applicability of cadastral surveying and LiDAR surveying. LiDAR survey is the method which obtains Geospatial information of the terrain. We will get a most topographic models at Digital Elevation Model(DEM) using LiDAR survey data. Also, we will consider both the surface parcel partition and volume parcel as a part of Geospatial relationship model. This study will focus on enhancing the efficiency and analysis of continual cadastral map and LiDAR DEM. I would like to close by proposing that LiDAR surveying will contribute in cadastral surveying.

  • PDF

A Study on the Strategic NSDI Model for Developing Countries based on Korean Experiences (한국의 경험을 통한 개발도상국 NSDI 전략적 구축 모델에 관한 연구)

  • Kim, Eun Hyung
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.11-21
    • /
    • 2013
  • This study aims to establish a strategic NSDI (National Spatial Data Infrastructure) model for developing countries based on good practices in the Republic of Korea. The Republic of Korea is a unique country in the world, which has become a developed country from a recipient of international aid since the Korean War in 1950. The rapid economic growth can be mostly attributed to the IT technologies and the Republic of Korea's NSDI efforts as a good practice could provide useful lessons for developing countries. This study consists of theoretical reviews, interviews of Korean NSDI experts, analysis for lessons learned, a summary of the lessons in terms of Six NSDI components and finally a strategic NSDI model for developing countries. The NSDI model is structured by (1) implementation strategies suggested for geospatial data, capacity building, geospatial platform, and cost-effective management with partnership, (2) a roadmap of important NSDI tasks and activities, and finally, (3) a harmonized approach for successful NSDI implementation.

Implementation of Barrier-free Content by using Virtual Reality and Geospatial Information (가상현실과 공간정보를 이용한 배리어 프리 콘텐츠 개발에 관한 연구)

  • Kim, Byeongsun;Jeon, Haechan
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.193-202
    • /
    • 2021
  • Barrier-free is defined as inclusive design of built environments such as building and its facilities that can be approached, entered and used by persons with disabilities. The purpose of this paper develops the content that can identify the physical barriers in the way of movement and provide information associated with barrier-free by using both Geospatial Information and Virtual Reality technology. For this, we conducted literature reviews to find the tackling barriers in terms of barrier-free access and extracted main functions to construct the content. Then, the prototype model which composed of VR engine and 3D geospatial data was implemented, and finally the utilization of the prototype was checked in accordance with barrier-free scenario. The developed prototype model of this study would be contributed to design the barrier-free of public places and access to public buildings for the mobility-disabled people.

An Improvement of Efficiently Establishing Topographic Data for Small River using UAV (UAV를 이용한 소하천 지형자료 구축에 관한 효율성 제고)

  • Yeo, Han Jo;Choi, Seung Pil;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.3-8
    • /
    • 2016
  • Due to the recent technical development and the enhancement of image resolution, Unmanned Airborne Vehicles(UAVs) have been used for various fields. A low altitude UAV system takes advantage of taking riverbed imagery at small rivers as well as land surface imagery on the ground. The bathymetric data are generated from the low altitude UAV system. The accuracy of the data is analyzed along water depths, comparing GPS observations and a DSM generated from UAV images. It is found that the depth accuracy of the geospatial data below 50 cm depth of water satisfies the regulation(${\pm}10cm$ spatial accuracy) of bathymetric surveying. Therefore this research shows that the geospatial data generated from UAV images at shallow regions of rivers can be used for bathymetric surveying.

The Methods for 3D Terrain Model Automation Using 2D Plan (2차원 설계자료를 이용한 3차원 지형모델 자동화 생성 방안)

  • Lee, Hyun Jik;Park, Eun Gwan;Moon, Geun Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • As the progress regarding spatial analysis on features such as landscape, sunlight, shadow, and direct ray using 3D simulation, it is required to research the creation of 3D terrain models crucial for 3D simulations. In this paper, we suggested the methods to create the 3D terrain model for the state after development, by transfer the 2D plan to 3D terrain model using the normal equation. Automated algorithm producing 3D terrain model from 2D plan was developed. And It is expected to be needed more studies detailed.

Estimation of Synthetic Unit Hydrograph Using Geospatial Shape Factors and Nash Model in Mid-size Watershed (중소규모유역의 지형공간적 형상계수를 이용한 Nash 모형기반의 합성단위도 산정)

  • Kim, Jin Gyeom;Kim, Jong Min;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.547-558
    • /
    • 2013
  • Improved methodology of Synthetic Unit Hydrograph (SUH) utilized generally in hydrologic design work was suggested. In this study, regression analysis between peak hydrological data and geospatial data was applied to estimate specific peak flow and peak time for determining shape of SUH. Regression formulas for specific peak flow with respect to shape factors show higher coefficient of determination (0.73~0.81) than the ones with geospatial components only (0.52~0.69). The areal limitation of unit hydrograph application is regarded as 500~700 $km^2$. The validation through rainfall-runoff simulation shows encouraging results that relative error is 1.7~29.0%(Avg. 11.6%) for the case of using SUH developed in this study and 35.0~ 64.9% (Avg. 46.7%) for the SUH in the previous study except for the extraordinary cases.

Design and Implementation of the Converged Platform for Geospaital and Maritime Information Service based on S-100 Standard (S-100 표준 기반 공간 및 항행정보 융합 서비스 플랫폼 설계 및 구현)

  • Kim, Min Soo;Jang, In Sung;Lee, Chung Ho
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.23-32
    • /
    • 2013
  • Recently, there has been much interest in the converged platform that enables the harmonized collection, integration, exchange, presentation and analysis of various kinds of marine information by using the ICT means. Regarding such the converged platform, S-100 standards including the international hydrographic data model are being announced and various studies have been published based on the S-100 standards. However, the existing studies have presented simple solutions for only given problems on the converged service of the maritime information. They could not propose the design concept of the converged platform which makes it possible to provide the standardized and integrated services among the geospatial data, the real-time maritime data, and the next ENC. Therefore, we propose design and implementation details of the converged service platform for the geospatial and the maritime data based on the S-100, WMS, WMTS, WPS, SOS standards. The proposed platform has advantages of supporting both the S-57 and the S-101, supporting the converged services of heterogeneous geospatial data and ENC data, supporting the real-time services of sensor data such as weather, AIS, and CCTV, and supporting the development of various kinds of maritime systems such as ECDIS, ECS, VTS based on the WebApp service. Finally, we proved the effectiveness of our proposed platform through the actual implementation of the converged service of geospatial data, S-101 data, and KWeather data.

Unified Systems on Surveying and Geoinformation Management in Korea - New Conceptual Design of Korean NSDI Model - (우리나라 측량·공간정보관리에 관한 통합시스템 연구 - 새로운 국가공간정보기반(NSDI) 모델의 도입 -)

  • Lee, Young-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.1
    • /
    • pp.179-194
    • /
    • 2014
  • In this study, it aims to research for unified system of "the surveying and geospatial information management" and new National geoSpatial Information Infrastructure(NSDI) as new paradigm against the strategy of "global geospatial information management". The country's existing NGIS projects and the policies of spatial information were examined in this paper, then it was defined newly by modification of NSDI's data coverage with bottom-up method. The new NSDI strategy is based on large scale digital map which was influenced by the local and global trend such as open data, e-Government, Earth observation, etc. (refer to Fig. 1). It was also suggested with new concept of NSDI model that the public-private sharing data can be added to digital map on equal term with spatial core data. (refer to Fig. 2) It is proposed the institutional model of MOLIT(Ministry of Land, Infrastructure and Transport) as new concept of NSDI which was applied(refer to Fig. 4). The new model is improving localization and reinforcing cooperation system with not only the other departments within the MOLIT but also the other ministries(forestry, environment, agriculture, heritage, etc.) from independent operation system as a part informatization of land, infrastructure and transport. At the new SDI institutional model of the MOLIT, the spatial information is reorganized as common data infrastructure for all applications, Goverment 3.0 can be feasible according to common data related to government agencies and local government's data vertically or horizontally. And then, it can be practical strategy model to integrate and link all the map and the register which are managed by the laws and institutions if this unified system as a common data can include all spatial core data(digital map), such as base map data of NGA(national gespatial agency), land data and facility data of local government.

Performance Evaluation of Smart Intersections for Emergency Response Time based on Integration of Geospatial and Incident Data

  • Oh, Heung Jin;Ashuri, Baabak
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.945-951
    • /
    • 2022
  • The major objective of this research is to evaluate performance of improved intersections for response time to emergency vehicle preemption. Smart technologies have been introduced to civil infrastructure systems for resilient communities. The technologies need to evaluate their effectiveness and feasibility to confirm their introduction. This research focuses on the performance of emergency vehicle preemption, represented by response time, when smart intersections are introduced in a community. The response time is determined by not only intersections but also a number of factors such as traffic, distance, road conditions, and incident types. However, the evaluation of emergency response has often ignored factors related to emergency vehicle routes. In this respect, this research synthetically analyzes geospatial and incident data using each route of emergency vehicle and conducts before-and-after evaluations. The changes in performance are analyzed by the impact of smart intersections on response time through Bayesian regression models. The result provides measures of the project's performance. This study will contribute to the body of knowledge on modeling the impacts of technology application and integrating heterogeneous data sets. It will provide a way to confirm and prove the effectiveness of introducing smart technologies to our communities.

  • PDF

A Method of Site Selection for the Artificial Recharge of Groundwater Using Geospatial Data (지형공간자료를 이용한 지하수 인공함양 적지 선정 방안)

  • Lee, Jae One;Seo, Minho;Han, Chan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.427-436
    • /
    • 2015
  • This study aims to select an optimal site for the development of small-scaled artificial ground water recharge system with the purpose of 50ton/day pumping in dry season. First of all, the topography shape satisfying the numerous factors of a hydraulic model experiment is defined and an appropriate pumping efficiency is calculated through the model experiment of injection and pumping scenario. In next step, GIS(Geographic Information System) database are constructed by processing several geospatial data to explore the optimal site. In detail, watershed images are generated from DEM(Digital Elevation Model) with 5m cell size, which is set for the minimum area of the optimal site selection. Slope maps are made from DEM to determine the optimal hydraulic gradient to procure the proper aquifer undercurrent period. Finally, the suitable site for artificial recharge system is selected using an integration of overall data, such as an alluvial map, DEM, orthoimages, slope map, and watershed images.