• Title/Summary/Keyword: Geophysical prospecting

Search Result 56, Processing Time 0.027 seconds

Groundwater Investigation in Northwestern Part of Saudi Arabia (Saudi Arabia 북서부의 지하수조사)

  • 한정상;정수웅
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.30-40
    • /
    • 1975
  • Hydrogeological survey and geophysical prospecting have been carried out in Saudi Arabia for the purpose of finding groundwater in the soil and rock at the request of General trading company in Jeddah, Saudi Arabia. The surveyed area is located on $38^{\circ}-39^{\circ}$ 30' in longitude and $26^{\circ}-26^{\circ}$ 30' in latitude. The topography of this area is dominated by northwest southeast mountain range composed mostly of precambrian rocks and basalt of tertiary period. Geology is mainly composed of greenstone, granite, andesite, diorite rhyolite of pre-cambrian era and sandstone of cambrian period which are underlained by basalt and andesite of tertiary period and alluvium of quaternary unconformably. The instruments used in this investigation are TR-18B2 radioactivity unit which isjapanese patented and A.C. Terrameter, a resistivity meter manufactured by ABEM of Stockholm, Sweden. Radioactivity method has been conducted along the Alula-Khaybar road, totally 164Km by the car-borne. As a result of the above survey 16 places have been selected and these anomalies show 1.2N-1.6N compared to background of each area in intensity with width of 10-50m. Resistivity vertical profiling which made use of Schlumberger configuration method has been made over selected areas by radioactivity method to provide hydrogeological information for a water resources survey. The result of resistivity shows that good aquifers are located in the western part of surveyed area where sedimentary rock is distributed. The strata showing 10-50, ${\Omega}-m$ in resistivity are thought to be waterbearing layer. The variations in aquifer resistivity found, are thought to be due to verying clay content, which could be related to aquifer yield. It has proved impossible to detect small salinity variation in the buried aquifer by geophysics. As a result of resistivity prospecting 10 places are recommended to be drilled at the anomalies as shown attached map. yields from the proposed holes have been estimated approximately from $20m^3$ to $200m^3$ per day. Prior to drilling for groundwater, test boring using ${\c}4"$ should be drilled in order to obtain more reliable hydrogeological information for the construction of perfect wells.ells.

  • PDF

ENGINEERING GEOLOGICAL STUDIES ON THE SUBMERGED TOMB OF KING MUNMU, SHILLA DYNASTY, KOREA (문무대왕 수증릉에 대한 지질공학적 연구)

  • HoWoongShon;SeongBeomKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.139-153
    • /
    • 2003
  • Subsurface information is one of the most important factors in the archaeological excavation. To obtain the information on the underground, geophysical prospecting is becoming a popular method. This study is on the small rocky islands located 200m away from the shoreline of Gampo, Gyeongju city, Korea. According to the historical records and field surveys, it was revealed as the tomb of King Munmu of Shilla Dynasty. However, the questions and debates, such as whether it is really the tomb of King Moonmu or not, and whether it is a buried place or not, are still remains, in addition to the incompletion of precise surveying and scientific studies. The scope of this study contains the researches on the above problems and debates using the geophysical and geological methods and techniques. The rocky islands around the submerged Tomb of King Moonmu is composed of granite, and sag exists inside of the islands. Sea water enters through the east groove by wave and is drained to the west slot by hydraulic gradient, since west slot is 15cm lower than the east. Sag inside of the islands is believed to be extended and widened from pre-existed sinkage by applying tools like chisel in the joints and cracks. It is concluded that the submerged megalith inside of sag was from the rock block which was developed by joints. Geophysical surveys reveal that there is no artificial structure or stone/china/steel chest, under the m egalith and rocky island. Researches show that the tomb of King Moonmu was constructed in the small rocky island artificially. However, the evidences show that planners and constructors of the tomb made every possible effort to preserve the natural environment and condition. It is strongly believed that the megalith was sort of alter to sprinkle bone-ash rather than buried place.

  • PDF

Development of a Data Integration Tool for Hydraulic Conductivity Map and Its Application (수리전도도맵 작성을 위한 자료병합 툴 개발과 적용)

  • Ryu, Dong-Woo;Park, Eui-Seup;Kenichi, Ando;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.493-502
    • /
    • 2007
  • Measurements of hydraulic conductivity are point or interval values, and are highly limited in their number. Meanwhile, results of geophysical prospecting can provide the information of spatial variation of geology, and abundant in number. In this study, it was aimed to develop a data integration tool for constructing a hydraulic conductivity map by integrating geophysical data and hydraulic conductivity measurements. The developed code employed a geostatistical optimization method, simulated annealing (SA), and consists of 4 distinct computation modules by which from exploratory data analysis to postprocessing of the simulation were processed. All these modules are equipped with Graphical User Interface (GUI). Validation of the developed code was evaluated in-situ in characterizing hydraulic characteristics of highly permeable fractured zone.

Contribution of Geophysics to the Study of Barite Mineralization in the Paleozoic Formations of Asdaf Tinejdad (Eastern Anti Atlas Morocco)

  • Ibrahim, Dakir;Ahmed, Benamara;Habiba, Aassoumi;Abdessalam, Ouallali;Youssef, Ait Bahammou
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • The use of the geophysical method in mining prospecting has been studied in the Asdaf region (South-East of Morocco). The objective of the study is to examine the aptitude of the electrical technique, in this case induced polarization (IP) and electric tomography, combined with the electromagnetic method (VLF), in the exploration of barite . The result obtained by the pseudo-sections of electrical tomography and that of KH filtration highlighted anomalies of resistant contact (greater than 400Ω.m) and of high charge chargeability (5mV / V). These contacts are hosted in less resistant Devonian age shale and sandstone. The resistivity response obtained at their level is characteristic of the venous structures associated with barite mineralization. The direction of the mineralized veins is parallel to the direction of the fractured zones (NE-SW), which indicates that the mineralization in place is due to the tectonic movements of the Hercynian orogeny (from Devonian to Permian). These veins are aligned with the locations of abandoned mine shafts and with surface mining areas. Geophysical technique therefore seems to play a key role in barite mining exploration.

SUPPRESSION OF SWELL EFFECT IN HIGH-RESOLUTION MARINE SEISMIC DATA USING CROSS-CORRELATION SCHEME (상호상관기법을 이용한 고분해능 천부해저탄성파탐사 자료에서의 너울효과 제거)

  • Kim,Jong-Cheon;Lee,Ho-Yeong;Kim,Ji-Su;Gang,Dong-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • Multi-channel seismic survey, which has been mainly employed in oil prospecting, is carried out as a high resolution shallow marine seismic exploration. Fault drop as small as 1 m can be resolved by employing high-resolution seismic survey. Similar to the effect of shallow inhomogenities in the land seismic data, due to occurrence of swell quite often higher than 1 m, shallow marine seismic data tend to be severely degraded. Suppression of such a swell effect is critical in processing of steps of marine seismic shallow high-resolution data. Compared to the moving average depth method, a newly developed method using cross-correlation technique is found out to be very effective in increasing the resolution of the shallow reflection events by accuratly elucidating the depth of sea bottom.

  • PDF

Tunnel Detection Using Seismic Multi-source Amplitude Data (복수파동원의 탄성파 진폭법을 이용한 터널탐사에 관한 연구)

  • Suh, Baek-Soo;Kim, Hoon;Sohn, Kwon-Ik
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.377-382
    • /
    • 2007
  • Several prospecting methods have been used to detect deep seated small tunnel in Korea. Tunnel interpretation of seismic method has been performed mainly by wave traveltime inversion method. But it often gives inacurate solution for the exact tunnel position because of the short distance between two measuring boreholes and picking errors of first arrivals. In this study, "error tomogram" was proposed to detect tunnel position and applied to theoretical and field dat using multi-source amplitude data.

Detection of Subsurface Ancient Remains in Sooseong Dang Area, Buan Using Ground Penetration Radar Technique (지하투과레이다 기법을 이용한 부안 수성당 지역의 지하 유적 탐사)

  • Lee, Hyoun-Jae;Jeon, Hang-Tak;Yun, Sul-Min;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.553-563
    • /
    • 2019
  • In order to survey archaeological sites, drilling and excavation are carried out at the final stage. However, at the preliminary stage, non-excavation geophysical prospection is used for assessing underground archaeological ruins. Among the geophysical prospecting techniques, Ground Penetration Radar (GPR) prospection has effectively been applied to historical sites due to its high resolution at shallow depths. In this study, the GPR prospection was conducted to find underground ruins near Suseong-Dang, the place of ancient rituals in Buan area, Korea. First, the GPR prospection was conducted at three sites (Site-1, 2, and 3), and subsequently, the GPR prospection was carried out at Site-3 in more detail. As a result of the prospection, the underground layered structure of the survey area consists of three layers, which are soil layer, weathered rock, and sound rock from the surface. And the GPR anomaly to the archaeological structure was clearly identified at around 100-cm depth showing est-west direction that is parallel to the long-axis array. This GPR anomaly of irregular geomorphological features and intermittent distribution may be related to the ritual remains found in Suseong Dang. The GPR prospection could be effectively used to detect archaeological sites or remains buried in the ground.

Geometric Characteristics of Southern Yangsan Fault Zone by Means of Geophysical Prospecting and Geological Survey (지구물리탐사와 지질조사에 의한 양산단층대 남부구간의 기하학적 특성)

  • Lee, Hyoun-Jae;Hamm, Se-Yeong;Park, Samgyu;Ryoo, Chung-Ryul
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2017
  • To date, several studies have been carried out to partially compare and analyze the resistivity values within the Yangsan fault zone through the electrical resistivity survey of the exposed fault zone. However, it is not easy to directly observe a large scaled fault like Yangsan fault that has been weathered, especially due to the weathering of the fault core. This study aimed to reveal the characteristics of location, geometry, the fault core zone as well as underground distribution of the associated fault damage zone, based on the results of electrical resistivity and micro-topographic surveys as well as field geology survey in the southern Yangsan fault zone (Eonyang area). The resistivity anomaly zones developed in the NNE to NE direction were confirmed by the electrical resistivity survey. According to the electrical resistivity, micro-topographic, and field geologic surveys, the Yangsan fault has been formed by three to five fault cores, fault damage zones and/or fractured zones.

A study on correlation between electrical resistivity obtained from electrical resistivity logging and rock mass rating in-situ tunnelling site (전기비저항 검층으로 얻은 전기비저항과 터널 현장 암반등급의 상관관계에 관한 연구)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jin-Ho;Ahn, Hee-Yoon;Kim, Ki-Seog;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.503-516
    • /
    • 2012
  • Rock mass rating (RMR) is the key factor when designing the appropriate support pattern of tunnel projects. Borehole drilling is usually performed along the tunnel route in order to determine the rock mass rating to be used for tunnel design. The rock mass rating at the non-boring region between boreholes is usually assessed through geophysical surveys such as electrical prospecting, seismic prospecting, etc. Many studies were carried out to find out the correlation between electrical resistivity and rock mass rating. However, most researches were aimed at obtaining the relationship between the two parameters utilizing experimental results obtained from laboratory tests or electrical prospectings. In this paper, efforts were made to analyze and obtain relationships between the electrical resistivity obtained from in-situ electrical resistivity logging data and the rock mass rating. Correlation studies using field data showed that the electrical resistivity is highly correlated with the rock mass rating with the determination coefficient more than 90%. The correlation analysis was also carried out between RMR classification parameters and the electrical resistivity. It was shown that the correlation between the condition of discontinuities and the electrical resistivity was very high with the determination coefficient more than 80%; that between the groundwater condition and the electrical resistivity was very low with the determination coefficient less than 57%.

Case Studies of Electrical Resistivity Imaging Technique in Civil & Environmental Engineering Areas (전기비저항 영상화 기법의 토목 및 환경분야 적용사례연구)

  • 정연문;김정호
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.91-102
    • /
    • 1998
  • Electrical resistivity method, one of the most widely used geophysical prospecting methods. has been usually applied to explorations for groundwater and underground resources. However, it has been extending its scope to civil & environmental engineering areas since it twas been developed so as to image underground structures effectively. A FEM algorithm for the dipole-dipole array was developed to correct topographic effects which have a serious influence on electrical methods. Applicability of the electrical resistivity imaging technique to civil & environmental engineering areas was verified through three case histories in this study First, thickness of soil layers was profiled to judge the possibility of developing borrow-pits tn an industrial complect site. Second, weak zones such as fractures and coal seams were detected to provide geological information for design and construction in a high mountain tunnel site. Third, horizontal/vertical distribution of the contaminated zone and depth of waste disposal were delineated in a completed industrial waste disposal site.

  • PDF