• Title/Summary/Keyword: Geometry variation

검색결과 402건 처리시간 0.023초

The Characterizing Analysis of a Buried-Channel MOSFET based on the 3-D Numerical Simulation

  • Kim, Man-Ho;Kim, Jong-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.267-273
    • /
    • 2007
  • A depletion-mode MOSFET has been analyzed to evaluate its electrical behavior using a novel 3-D numerical simulation package. The characterizing analysis of the BC MOSFET was performed through short-channel narrow-channel and small-geometry effects that are investigated, in detail, in terms of the threshold voltage. The DIBL effect becomes significant for a short-channel device with a channel length of $<\;3({\mu}m)$. For narrow-channel devices the variation of the threshold voltage was sharp for $<4({\mu}m)$ due to the strong narrow-channel effect. In the case of small-geometry devices, the shift of the threshold voltage was less sensitive due to the combination of the DIBL and substrate bias effects, as compared with that observed from the short-channel and narrow-channel devices. The characterizing analysis of the narrow-channel and small-geometry devices, especially with channel width of $<\;4({\mu}m)$ and channel area of $<\;4{\times}4({\mu}m^2)$ respectively, can be accurately performed only from a 3-D numerical simulation due to their sharp variations in threshold voltages.

Similarity of energy balance in mechanically ventilated compartment fires: An insight into the conditions for reduced-scale fire experiments

  • Suto, Hitoshi;Matsuyama, Ken;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2898-2914
    • /
    • 2022
  • When evaluating energy balance and temperature in reduced-scale fire experiments, which are conducted as an alternative to full-scale fire experiments, it is important to consider the similarity in the scale among these experiments. In this paper, a method considering the similarity of energy balance is proposed for setting the conditions for reduced-scale experiments of mechanically ventilated compartment fires. A small-scale fire experiment consisting of various cases with different compartment geometries (aspect ratios between 0.2 and 4.7) and heights of vents and fire sources was conducted under mechanical ventilation, and the energy balance in the quasi-steady state was evaluated. The results indicate the following: (1) although the compartment geometry varies the energy balance in a mechanically ventilated compartment, the variation in the energy balance can be evaluated irrespective of the compartment size and geometry by considering scaling factor F (∝heffAwRT, where heff is the effective heat transfer coefficient, Aw is the total wall area, and RT is the ratio of the spatial mean gas temperature to the exhaust temperature); (2) the value of RT, which is a part of F, reflects the effects of the compartment geometry and corresponds to the distributions of the gas temperature and wall heat loss.

H-다리우스 블레이드의 형상 변화에 따른 기동특성 해석 (Effect of Geometric Variation on Starting Characteristic Analysis of H-Darrieus Blades)

  • 정진환;강기원;김범수;이장호
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.45-49
    • /
    • 2011
  • This paper describes the numerical analysis of effect of geometric variation on the straight-bladed vertical axis wind turbine. Geometry variation is performed with pockets on the blades. The results presented in this numerical analysis show the general flow pattern of near the bladed, and azimuth angle variation on stating torque value. It is shown that the pockets makes torque higher about 80%.

비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석 (The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF

고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석 (Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation)

  • 박영학;부준홍;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권2호
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

PistonCavity 형상에 따른 충돌분류의 분무거동 (The Behavior of Impinging Spray by Piston Cavity Geometry)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제3권4호
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis in Shape Optimization Problems and its Application)

  • 곽현구;최주호
    • 한국전산구조공학회논문집
    • /
    • 제18권3호
    • /
    • pp.255-263
    • /
    • 2005
  • 본 논문에서는 다양한 문제들의 형상 설계 민감도 해석에 대한 효율적인 경계기반 기법을 제시하였다 우선 문제에서 정의된 일반적인 함수들에 대한 연속체 형태의 식에 근거하여, 경계 적분 형태의 해석적 민감도 식을 유도하였다. 이 식은 다양한 형상 설계 문제들의 경사를 계산하는데 편리하게 사용할 수 있다. 그리고 경계법은 형상 변분 벡터가 전체 도메인이 아닌 경계에서만 요구된다는 장점이 있는데, 여기서 경계 형상 변분은 형상 함수의 복잡한 해석적 미분 대신 형상을 미소 증분시킴으로써 편리하게 계산할 수 있다. 제시한 방법의 효율성을 보이기 위해 포텐셜 유동 문제와 필렛(fillet)에서의 응력 집중 문제에 이를 적용하였다.