• Title/Summary/Keyword: Geometry reconstruction

Search Result 127, Processing Time 0.032 seconds

A Study on the 3D Representation of 2D Projection Data using Epipolar Geometry (Epipolar 기하학을 이용한 2차원 투영 데이터의 3차원 표현에 관한 연구)

  • Yu, Seon-Guk;Wang, Ge;Kim, Nam-Hyeon;Kim,Yong-Uk;Kim, Hui-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.212-219
    • /
    • 2002
  • In this paper, the epipolar geometry, genera17y used as a pin-hole camera model, is newly adapted to our proposed method that enables the affine reconstruction of the 3D object from two projected views. The proposed method models the projective projection of inherent X-ray imaging system, obviates the need to attach artifirially constructed material on the body, and requires none of the prior-knowledge regarding to intrinsic and extrinsic parameters of two X-ray imaging systems. The optimum numerical solution is obtained by applying the least mean square estimator to corresponding points on two projected X-ray planes. The performance of this proposed method is Quantitatively analyzed using computer synthesized model of Cochlear implantation electrodes. In simulated experiments, the propnsed method is insensitive to the added random noise, the scaling factor change, the center point change, and rotational angular change between two projection planes, as well as enables the stable 3D reconstruction in least square sense even in worst testing cases.

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

XPD Analysis on the Cleaved GaAs(110) Surface (절개된 GaAs(110) 면의 XPD 분석)

  • Lee, Deok-Hyeong;Jeong, Jae-Gwan;O, Se-Jeong
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.171-180
    • /
    • 1993
  • X-ray photoelectron diffraction (XPD) is used to characterize the crystallographically cleaved GaAs(110) surface. By using polar and azimuthal scans of the usual angle-resolved x-ray photoelectron spectroscopy, we get the reconstruction geometry of the clean GaAs(110) surface from the intensity ratio of Ga 3d core-level peaks. The reconstruction parameters are determined by fitting the diffraction pattern with the single scattering cluster (SSC) model, and the results show similar tendencies to those obtained by other techniques.

  • PDF

Study of real image reconstruction by hologram (홀로그램의 실상 재생 geometry 연구)

  • 백성훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.156-161
    • /
    • 1991
  • 결상 홀로그램(image hologram)을 제작할 때 물체의 실상을 얻는 방법으로는 렌즈 등의 광학계를 이용하거나 다른 홀로그램에서 재생된 실상을 이용하는 방법 등이 있다. 본 연구에서는 결상 홀로그램을 제작하기 위하여 홀로그램에서 실상을 재생할 때, 재생빔으로 diverging spherical wave를 사용하는 geometry를 제안하고 문제점-재생된 실상의 상배를 변화와 홀로그램 수차들을 논의하였다.

  • PDF

3D reconstruction method without projective distortion from un-calibrated images (비교정 영상으로부터 왜곡을 제거한 3 차원 재구성방법)

  • Kim, Hyung-Ryul;Kim, Ho-Cul;Oh, Jang-Suk;Ku, Ja-Min;Kim, Min-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.391-394
    • /
    • 2005
  • In this paper, we present an approach that is able to reconstruct 3 dimensional metric models from un-calibrated images acquired by a freely moved camera system. If nothing is known of the calibration of either camera, nor the arrangement of one camera which respect to the other, then the projective reconstruction will have projective distortion which expressed by an arbitrary projective transformation. The distortion on the reconstruction is removed from projection to metric through self-calibration. The self-calibration requires no information about the camera matrices, or information about the scene geometry. Self-calibration is the process of determining internal camera parameters directly from multiply un-calibrated images. Self-calibration avoids the onerous task of calibrating cameras which needs to use special calibration objects. The root of the method is setting a uniquely fixed conic(absolute quadric) in 3D space. And it can make possible to figure out some way from the images. Once absolute quadric is identified, the metric geometry can be computed. We compared reconstruction image from calibrated images with the result by self-calibration method.

  • PDF

SCATTERING CORRECTION FOR IMAGE RECONSTRUCTION IN FLASH RADIOGRAPHY

  • Cao, Liangzhi;Wang, Mengqi;Wu, Hongchun;Liu, Zhouyu;Cheng, Yuxiong;Zhang, Hongbo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.529-538
    • /
    • 2013
  • Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Revisiting Triangle : a Foundational Element of Plane Geometry (평면도형 탐구의 기본 요소로서 삼각형 다시 보기)

  • Do, Jong-Hoon
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2007.06a
    • /
    • pp.37-50
    • /
    • 2007
  • What is a foundational element of plane geometry? Isn't it possible to constitute the contents of plane geometry from that element? In this paper, we suggest a view point that triangle is a foundational element of plane geometry. And take some examples of reconstruction of usually given contents and mathematical activity centered on the triangle in plane geometry.

  • PDF

Center Determination for Cone-Beam X-ray Tomography

  • Narkbuakaew, W.;Ngamanekrat, S.;Withayachumnankul, W.;Pintavirooj, C.;Sangworasil, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1885-1888
    • /
    • 2004
  • In order to render 3D model of the bone, the stack of cross-sectional images must be reconstructed from a series of X-ray radiographs, served as the projections. In the case where the distance between x-ray source and detector is not infinite, image reconstruction from projection based on parallel-beam geometry provides an error in the cross-sectional image. In such case, image reconstruction from projection based on conebeam geometry must be exercised instead. This paper is devoted to the determination of detector center for SART conebeam Technique which is critically effect the performance of the resulting 3D modeling.

  • PDF

UHV x-ray scattering system for surface structural studies (표면원자구조 연구를 위한 초고진공 X-선 산란 장치)

  • 김효정;강현철;노도영;강태수;제정호;김남동;이성삼;정진욱
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.93-97
    • /
    • 2001
  • We introduce the structure and the capability of a UHV x-ray scattering system constructed for surface structural studies. The system consists of vacuum parts required for surface preparation and a vertical-horizontal diffractometer using the S2D2 geometry. To illustrate the capability of the system, we measured the 7$\times$7 reconstruction peak of a Si (111) surface. The peak count rate was 216 counts/sec and the domain size of the 7$\times$7 reconstruction was larger than 1600 $\AA$. This demonstrates that the system is capable of providing surface structural information.

  • PDF