• Title/Summary/Keyword: Geometry function

Search Result 646, Processing Time 0.1 seconds

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

A Hybrid Genetic Algorithms for Inverse Radiation Analysis (역복사 해석을 위한 혼합형 유전알고리즘에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1639-1644
    • /
    • 2003
  • A hybrid genetic algorithm is developed for estimating the wall emissivities for an absorbing, emitting, and scattering media in a two-dimensional irregular geometry with diffusely emitting and reflecting opaque boundaries by minimizing an objective function, which is expressed by the sum of square errors between estimated and measured temperatures at only four data positions. The finite-volume method was employed to solve the radiative transfer equation for a two-dimensional irregular geometry. The results show that a developed hybrid genetic algorithms reduce the effect of genetic parameters on the performance of genetic algorithm and that the wall emissivities are estimated accurately without measurement errors.

  • PDF

Efffct of Material Removal per Tooth on the Circumferential Shape of Cylindrically Milled Parts (공구날당 소재제거량이 원통형 밀링가공물의 원주형상에 미치는 영향)

  • Kim Kwang Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.62-66
    • /
    • 2004
  • A study for investigating the effects of the cutting conditions(feed rate, radial depth of cut, cutting speed) and the tool diameter on the circumferential geometry of the cyl indrically end-mi1led workpiece is described. In this work, the circumferential geometry is characterized by the roundness error. Experimental results show that the circumferential geometry is directly affected by the material removal per tooth,which is defined as a function of the cutting speed, the feed rate and the radial depth of cut. And, the radial depth of cut is revealed to be the most critical condition among them. It is also found that the roundness error decreases when the tool diameter is larger under the same cutting conditions.

A Dynamic Structural Analysis System for Propeller Blades (프로펠러 날개의 동적 구조해석 시스템 개발)

  • 노인식;이정렬;이현엽;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.114-120
    • /
    • 2004
  • Propeller blades have complex airfoil section type geometry and the thickness is continuously varied to both its length and cord-wise direction. in the present research, the finite element analysis program PROSTEC (Propeller Stress Evaluation Code) is developed to calculate the structural responses of propeller blades in irregular ship wake field. To represent the curved and skewed geometry of propeller blades accurately, 20-node curved solid element using the quadratic shape function is adopted. Input data for the analysis including the geometry and pressure distribution of propeller blades can be generated automatically from the propeller design program. And to visualize the results of analysis on windows system conveniently, the post processor PROSTEC-POST is developed.

SERS Analysis of CMC on Gold-Assembled Micelle

  • Jang, Nak-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1392-1396
    • /
    • 2004
  • The micellization of dodecylpyridinum chloride (DPC) assembled on aqueous gold nanoparticles has been studied as a function of concentration using Surface-Enhanced Raman Scattering (SERS). At the low concentration, the strong SERS band of the benzene ring moiety was observed at 1025 $cm^{-1}$, and assigned to “trigonal ring breathing”. According to high concentration of DPC, a new strong band was also appeared at 1012 $cm^{-1}$, which was assigned to “totally symmetry ring breathing”. The difference of two spectra seems to ascribe to the geometry of polar head group, i.e., pyridinium cation. These geometry exist flat-down at low concentration, whereas standing-up or tilted geometry at high concentration. The critical micelle concentration (CMC) was first obtained from the ratio of intensities of the two bands related to the benzene ring moiety by vibrational spectroscopy, and was about 28 mM. After the CMC, the benzene ring moiety in the micelle state was more restricted than in monomer state because there is no more change of intensities at 1012 $cm^{-1}$. In addition, the size of gold-assembled micelle was estimated using light scattering and it was about 328.3 nm.

Game Theoretic based Distributed Dynamic Power Allocation in Irregular Geometry Multicellular Network

  • Safdar, Hashim;Ullah, Rahat;Khalid, Zubair
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.199-205
    • /
    • 2022
  • The extensive growth in data rate demand by the smart gadgets and mobile broadband application services in wireless cellular networks. To achieve higher data rate demand which leads to aggressive frequency reuse to improve network capacity at the price of Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has been recognized as an effective scheme to get a higher data rate and mitigate ICI for perfect geometry network scenarios. In, an irregular geometric multicellular network, ICI mitigation is a challenging issue. The purpose of this paper is to develop distributed dynamic power allocation scheme for FFR based on game theory to mitigate ICI. In the proposed scheme, each cell region in an irregular multicellular scenario adopts a self-less behavior instead of selfish behavior to improve the overall utility function. This proposed scheme improves the overall data rate and mitigates ICI.

Quality Assurance on Dose Distribution of Ir-192 Line Source (Ir-192 선 선원의 선량분포에 관한 품질보증)

  • Kim, Jong-Eon
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The propose of this study is a verification of the correct calculation of the dose around source and the prescription dose of Ir-192 source in the plato treatment planning system. The source and orthogonal coordinates for lateral direction and those for the anterior posterior direction were drawn on a A4 paper and then input into the system. The prescription dose was prescribed to two points with radius 1 cm in the direction of polar angle $90^{\circ} and $270^{\circ} from the center of the source. The doses of prescription point and dose points acquired from the treatment planning system were compared with those from manual calculation using the geometry function formalism derived by Paul King et al. In this analysis, the doses of prescription point were exactly consistent with each other and those of dose points were obtained within the error point of 1.85%. And the system of accuracy was evaluated within 2% of tolerance error. Therefore, this manual dose calculation used for the geometry function formalism is considered to be useful in clinics due to its convenience and high quality assurance.

  • PDF

The Preliminary Design Guideline for Tall Building: Exploration of Planning Factors & Building Factors

  • Choi, Yong Sun
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Every year new tall buildings are being conceived, designed, and built with new schemes. Thus it is important to explore the factors that affect tall building design. Thus it is important to explore the tall building design factors. The planning and design of tall buildings require different criteria than those that exist in regular size buildings. Tall buildings are uniquely expressed by their structural systems where exterior esthetic and requirements of space drive the form and composition of the structural systems. Therefore the exploration of design factors is the key to achieve optimum building systems. Optimization as mentioned here is associated with the efficiency of the different building systems. To achieve an optimal system, there is a need for an understanding of the factors that affect on overall tall building design such as planning module, building function, lease span, floor-to-floor-height, building height (aspect ratio), structural system, environmental systems. In this paper a statistical approach will be used and will be based on data collected from the practice through a rigorous survey taken. This information is tabulated and analyzed. The major target of investigation will be lease span related to space requirement in the tall building planning. Factors related to lease spans, such as function, floor-to-floor height, planning module, building height, overall plan dimension, and plan ratio (building geometry), will be looked at carefully. IN conclusion, this approach of optimization can introduce a preliminary design guideline for tall building projects. The purpose of the paper should shed some light on the optimum tall building design criteria.

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.