• Title/Summary/Keyword: Geometry algorithms

Search Result 176, Processing Time 0.022 seconds

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

DEM generation from an IKONOS stereo pair using EpiMatch and Graph-Cut algorithms

  • Kim, Tae-Jung;Im, Yong-Jo;Kim, Ho-Won;Kweon, In-So
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.524-529
    • /
    • 2002
  • In this paper, we report the development of two DEM (digital elevation model) generation algorithms over urban areas from an IKONOS stereo pair. One ("EpiMatch") is originally developed for SPOT images and modified for IKONOS images. It uses epipolar geometry for accurate DEM generation. The other is based on graph-cut algorithm in 3D voxel space. This algorithm is believed to work better on height discontinuities than EpiMatch. An IKONOS image pair over Taejon city area was used for tests. Using ground control points obtained from differential GPS, camera model was set up and stereo matching applied. As a result, two DEMs over urban areas were produced. Within a DEM from EpiMatch small houses appear as small "cloudy" patches and large apartment and industrial buildings are visually identifiable. Within the DEM from graph-cut we could achieve better height information on building boundaries. The results show that both algorithms can generate DEMs from IKONOS images although more research is required on handling height discontinuities (for "EpiMatch") and on faster computation (for "Graph-cut").

  • PDF

Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition (재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법)

  • Gizachew, Gocho Yirga;Jeong, Moon Hwan;Ko, Hyeong Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The computational cost of clothing simulation and rendering is mainly depends on the type of mesh and its quality. Thus, quadrilateral meshes are generally preferred over triangular meshes for the reasons of accuracy and efficiency. This paper presents a method of quadrangulating sewing pattern based on the recursive geometry decomposition method. Herein, we proposed two simple improvements to the previous algorithms. The first one deals with the recursive geometry decomposition in which the physical domain is decomposed into simple and mappable regions. The second proposed algorithm deals with the vertex validation in which the invalid vertex classification can be validated.

Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production (고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-42
    • /
    • 2013
  • This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

Lane Departure Warning Algorithm Through Single Lane Extraction and Center Point Analysis (단일차선추출 및 중심점 분석을 통한 차선이탈검출 알고리즘)

  • Bae, Jung-Ho;Kim, Soo-Woong;Lee, Hae-Yeoun;Lee, Hyun-Ah;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.35-46
    • /
    • 2009
  • Lane extraction and lane departure warning algorithms using the image sensor attached in the vehicle are addressed. With the research about intelligent automobile, there have been many algorithms about lane recognition and lane departure warning system. However, since these algorithms require to detect 2 lanes, the high time complexity and the low recognition rate under various driving circumstances are critical problems. In this paper, we present a lane departure warning algorithm using single lane extraction and center point analysis that achieves the fast processing time and high detection rate. From the geometry between camera and objects, the region of interest (ROI) is determined and splitted into two parts. Hough transform detects the part of the lane. After the detected lane is restored to have a pre-determined size, lane departure is estimated by calculating the distance from the center point. On real driving environments, the presented algorithm is compared with previous algorithms. Experiment results support that the presented algorithm is fast and accurate.

Numerical Simulation of the Aluminum Alloys Solidification in Complex Geometries

  • Monteiro Eliseu;Rouboa Abel
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1773-1780
    • /
    • 2005
  • The process of mould design in the foundry industry has been based on the intuition and experience of foundry engineers and designers. To bring the industry to a more scientific basis the design process should be integrated with scientific analysis such as heat transfer. The production by foundry techniques is influenced by the geometry configuration, which affects the solidification conditions and subsequent cooling. Numerical simulation and/or experiments make possible the selection of adequate materials, reducing cycle times and minimizing production costs. The main propose of this work is to study the heat transfer phenomena in the mould considering the phase change of the cast-part. Due to complex geometry of the mould, a block unstructured grid and a generalized curvilinear formulation engaged with the finite volume method is described and applied. Two types of boundary conditions, diffusive and Newtonian, are used and compared. The developed numerical code is tested in real case and the main results are compared with experimental data. The results showed that the solidification time is about 6 seconds for diffusive boundary conditions and 14.8 seconds for Newtonian boundary conditions. The use of the block unstructured grid in combination with a generalized curvilinear formulation works well with the finite volume method and allows the development of more efficient algorithms with better capacity to describe the part contours through a lesser number of elements.

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

A Study on the Evaluation of Simplification Algorithms Based on Map Generalization (지도 일반화에 따른 단순화 알고리즘의 평가에 관한 연구)

  • Kim, Kam-Lae;Lee, Ho-Nam;Park, In-Hae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1992
  • The digital map database is often produced for multiple purposes, including mapping at multiple scales; it is increasingly rare that a base map is digitized for mapping at a single scale. The most important problems in process of line simplification in map generalization and multiple representation is that tolerance value selected for simplifying base map information must be modified as feature geometry varies within the digital file to ensure both accuracy and recognizability of graphic details on a generalized map. In this study, we explored various algorithms regarding to line simplication at many scales from a single digital file, and presents a rule by which to determine those scale at which line feature geometry might be expected to change in map representation. By applying two measured of displacement between a digitized line and its simplification, five algorithms have been evaluated. The results indicate that, of the five, the Douglas-Peucker routine produced less displacement between a line and its simplification. The research has proved to automating map simplification, incorporating numeric guidelines into digital environment about what magnitude and variation in geometric detail should be preserved as the digital data is simplified for representation at reduced map scales.

  • PDF