• Title/Summary/Keyword: Geometry Optimization

Search Result 506, Processing Time 0.024 seconds

An Optimization Method Based on Hybrid Genetic Algorithm for Scramjet Forebody/Inlet Design

  • Zhou, Jianxing;Piao, Ying;Cao, Zhisong;Qi, Xingming;Zhu, Jianhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.469-475
    • /
    • 2008
  • The design of a scramjet inlet is a process to search global optimization results among those factors influencing the geometry of scramjet in their ranges for some requirements. An optimization algorithm of hybrid genetic algorithm based on genetic algorithm and simplex algorithm was established for this purpose. With the sample provided by a uniform method, the compressive angles which also are wedge angles of the inlet were chosen as the inlet design variables, and the drag coefficient, total pressure recovery coefficient, pressure rising ratio and the combination of these three variables are designed specifically as different optimization objects. The contrasts of these four optimization results show that the hybrid genetic algorithm developed in this paper can capably implement the optimization process effectively for the inlet design and demonstrate some good adaptability.

  • PDF

A Experiment Study for Welding Optimization of fillet Welded Structure (필릿 용접 구조물의 용접 최적화률 위한 실험적 연구)

  • Kim, Il-Soo;Na, Hyun-Ho;Kim, Ji-Sun;Lee, Ji-Hye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1054-1061
    • /
    • 2011
  • GMA welding process is a production process to improve productivity for the provision of higher quality of material, These includs numerous process variables that could affect welding quality, productivity and cost savings. Recently, the welding part of construction equipment had frequent failure of major components in the welding part of each subsidiary material due to shock which is very poor according to the welding part. Therefore, the implementation of sound welding procedure is the most decisive factor for the reliability of construction machinery. The data generated through experimens conducted in this study has validated its effectiveness for the optimization of bead geometry and process variables is presented. The criteria to control the process parameters, to achieve a healthy bead geometry. This study has developed mathematical models and algorithms to predict or control the bead geometry in GMA fillet welding process.

RDO-based joint bit allocation for MPEG G-PCC

  • Ye, Xiangyu;Cui, Li;Chang, Eun-Young;Cha, Jihun;Ahn, Jae Young;Jang, Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.81-84
    • /
    • 2021
  • In this paper, a rate-distortion optimization (RDO) model is proposed to find the joint bit allocation of geometry data and color data based on geometry-based point cloud compression (G-PCC) of Moving Picture Experts Group (MPEG). The mechanism of the method is to construct the RD models for geometry and color data through the training process. Afterward, two rate-distortion (RD) models are integrated as well as the decision of the parameter λ to obtain the final RDO model. The experimental results show that the proposed method can decrease 20% of the geometry Bjøntegaard delta bit rate and increase 37% of the color Bjøntegaard delta bit rate compared to the MPEG G-PCC TMC13v12.0 software.

  • PDF

Isogeometric Shape Design Optimization of Structures under Stress Constraints (응력 제한조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Ahn, Seung-Ho;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, the design optimization of structures with stress constraints is performed using isogeometric shape optimization method. The stress constraints have an important role in design optimization problems since stress concentration could result in structural failure. To represent exact geometry in analysis, the isogeometric analysis method uses the same basis functions as used in the CAD geometry. The geometrically exact model can be used in both stress and design sensitivity analyses so that it can yield more precise optimal design than finite element one. Through numerical examples, the isogeometric approach turns out to be effective in shape optimization problems under stress constraints.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach

  • Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.355-369
    • /
    • 2021
  • Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.

Design of an LCL Filter employing a Symmetric Geometry and its Control in Grid-connected Inverter Applications (계통연계형 인버터에서 대칭 구조를 갖는 LCL 필터 설계 및 제어)

  • Lee, Kui-Jun;Park, Nam-Ju;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.250-252
    • /
    • 2008
  • An inductor-capacitor-inductor (LCL) filter are widely adapted in grid-connected inverter applications. In this paper, the harmonic attenuations of the LCL filter are quantitatively analyzed, and then the design optimization of two inductance values, which are related on a cost and a size, is illustrated. Based on the design optimization, the LCL filter employing a Symmetric Geometry is proposed. Through the equivalent circuit analysis of the proposed LCL filter, the operating characteristics and validity are presented in detail. In addition, simple proportional-integral (PI) current controller suitable for the LCL Filter is designed to mitigate the resonance problem. From simulation results, it is seen that the proposed LCL filter and control method have a sufficient attenuation and stability for the high frequency distortions and load variations.

  • PDF

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Optimization of the tool geometry of PSST using taguchi's orthogonal matrix (다구치 직교배열을 이용한 평면변형률 장출실험용 금형의 최적설계)

  • Kim, Yeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2073-2080
    • /
    • 1997
  • Recently, the plane strain puch stretching test(called PSST) has been developed and used successfully in the evaluation of the press formability of automotive steel sheets. In this paper, the optimum punch geometry of the original PSST tool was investigated by the FEM analysis. The puch length, crown and corner radius are chosen to be optimized according to the Taguchi's experiment technique with the $L_4$ orthogonal array.

A Study on the Modeling and Optimization of Check Valve in Automatic Transmission (자동변속기내 체크밸브의 모델링 및 최적화 연구)

  • 송재수;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1997
  • The operating characteristics of the check valve in the clutch piston of an automatic transmission have a great effect on the shifting performance. This paper addresses the modeling, dynamic analysis, and optimization of the check valve. It was found that the vortex causes a pressure drop, which is related to the rotating speed of the clutch piston, oil volume discharged from the check valve, and valve geometry. Maximizing the oil volume discharged, geometry of the check valve is optimized. The results can be used to design an improved check valve which provides a suitable oil pressure curves for achieving smoother shifting.

  • PDF