• Title/Summary/Keyword: Geometry Optimization

Search Result 506, Processing Time 0.028 seconds

Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Geographic information 3D Synthetic Model based on Regular Mesh (Regular Mesh 기반 지리정보 3D 합성모델)

  • Jung, Ji-Hwan;Hwang, Sun-Myung;Kim, Sung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.616-625
    • /
    • 2011
  • There are two representative geometry rendering methods. One is Geometry Clipmaps, another is ROAM 2.0. We propose an extended Geometry Clipmaps algorithm which does not focus on CPU operation but the GPU for faster and wider visibility area. The extended algorithm presents mesh configuration method of each level by LOD, how to configurate Mesh network between levels, mesh block method for rendering optimization using VFC, and image mapping method to get high resolution up to 1 m.

3D-Distortion Based Rate Distortion Optimization for Video-Based Point Cloud Compression

  • Yihao Fu;Liquan Shen;Tianyi Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.435-449
    • /
    • 2023
  • The state-of-the-art video-based point cloud compression(V-PCC) has a high efficiency of compressing 3D point cloud by projecting points onto 2D images. These images are then padded and compressed by High-Efficiency Video Coding(HEVC). Pixels in padded 2D images are classified into three groups including origin pixels, padded pixels and unoccupied pixels. Origin pixels are generated from projection of 3D point cloud. Padded pixels and unoccupied pixels are generated by copying values from origin pixels during image padding. For padded pixels, they are reconstructed to 3D space during geometry reconstruction as well as origin pixels. For unoccupied pixels, they are not reconstructed. The rate distortion optimization(RDO) used in HEVC is mainly aimed at keeping the balance between video distortion and video bitrates. However, traditional RDO is unreliable for padded pixels and unoccupied pixels, which leads to significant waste of bits in geometry reconstruction. In this paper, we propose a new RDO scheme which takes 3D-Distortion into account instead of traditional video distortion for padded pixels and unoccupied pixels. Firstly, these pixels are classified based on the occupancy map. Secondly, different strategies are applied to these pixels to calculate their 3D-Distortions. Finally, the obtained 3D-Distortions replace the sum square error(SSE) during the full RDO process in intra prediction and inter prediction. The proposed method is applied to geometry frames. Experimental results show that the proposed algorithm achieves an average of 31.41% and 6.14% bitrate saving for D1 metric in Random Access setting and All Intra setting on geometry videos compared with V-PCC anchor.

Design of an Axial-flow Pump Using a Genetic Optimization Technique (유전적 최적화 기법을 이용한 축류 펌프의 설계)

  • Song, Jae-Wook;Oh, Jae-Min;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.795-804
    • /
    • 2002
  • The optimal design code of an axial flow pump has been developed to determine geometric and fluid dynamic variables under hydrodynamic as well as mechanical design constraints. The design code includes the optimization of the complete radial distribution of the geometry by determining the coefficients of 2$^{nd}$ order polynomials to represent the three-dimensional geometry. The optimization problem has been formulated with a nonlinear multivariable objective function, maximizing the efficiency and stall margin, while minimizing the net positive suction head required. Calculation of the objective function is based on the mean streamline analysis and through-flow analysis using the present state-of-the-art model. The optimal solution is calculated using the penalty function method in which the genetic optimizer is employed. The optimized efficiency and design variables are presented in this paper as a function of non-dimensional specific speed in the range, 2$\leq$ $n_{s}$ $\leq$10. The results can be used in preliminary design of axial flow pumps.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Park, M.K.;Lim, Seung-Chul;Lee, Joong-Won;Sindhu, Rashid Ali
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.397-401
    • /
    • 2008
  • Knowledge of dynamic characteristics of structural elements often can make difference between success and failure in the design of structure due to resonance effect. In this paper an analytical model of a cantilever beam having midpoint load is considered for structural optimization. This involves creating the geometry which allows parametric study of all design variables. For that purpose optimization of cantilever beam is elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight using ANSYS. But such geometry could be obtained by different combinations of width and height, so that it may have the same cross sectional area yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration different dynamic analyses are performed simultaneously to solve the eigenvalues problem assuming no damping initially through MATLAB simulations using state space form for modal analysis, which identifies the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. And next by introducing damping effects tip displacement, bending stress and the vertical reaction force at the fixed end is evaluated under some dynamic load of varying frequency, and finally it is discussed how resonance can be avoided for particular design. Investigation of results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design. Potentially this technique will meet maintenance and cost goals of many organizations particularly for the application where dynamic loading is invertible and helps a lot ensuring that the proposed design will be safe for both static and dynamic conditions.

  • PDF

Optimization of sensor location for source localization : Minimum-Norm Least-Square Method (신호원 국소화를 위한 위치의 최적화 : MNLS)

  • 김유정;한주만;이인범;박광석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.124-126
    • /
    • 2000
  • The Minimum-Norm Least-Square(MNLS) approach based on lead field theory is an useful method to find an unique inverse solution for the measured magnetic field. The lead field depends on head geometry and location of sources and sensors. So, optimization of sensor array location is important issue for MNLS estimation. In this paper, we present an investigation for the optimization of sensor array location in computer simulation.

  • PDF

Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins (곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.