• Title/Summary/Keyword: Geometry Control

Search Result 766, Processing Time 0.035 seconds

An overview of the early stage of vehicle modeling and design

  • Baek, Moon-Yeol;Yi, Hyeong-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.334-337
    • /
    • 1996
  • This is a paper intended for initial stage of vehicle modeling and design. The needs to determine a variety of vehicle suspension parameters required for initial design has been difficult and time-consuming task. In order to facilitate a concise and efficient presentation of initial vehicle design procedure, this paper uses a mathematical model and physical geometry. Vehicle model consists of dimensions, inertias and mechanical constants. These vehicle model parameters divided into several categories : basic parameters, coefficients and constants, design specification, spring and damper, bush stiffness, stabilizer bar, suspension geometry, tire, and vehicle weights of various design condition. This paper uses a vehicle design fundamental (VDF) program running under Windows 95 graphical interface. The features of VDF will be briefly outlined in this paper.

  • PDF

Preliminary programming for librarization of Haptic Primitives based on constructive solid geometry and god-object

  • Jin, Do-Hyung;Kyung, Ki-Uk;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1093-1097
    • /
    • 2004
  • We propose 'the haptic primitive' for haptic rendering without the need to solve complicated parametric equations. To develop 'the haptic primitive', we adopted "the God-Object Method" as a haptic rendering algorithm and applied 'Constructive Solid Geometry' to manage haptic objects. Besides being used in the 'ghost library' of $PHANToMTM^{TM}$ our method can be used as a basic component for developing tools and libraries that aim to simplify haptic modeling. It can also be applied to tactile display modules and temporal display modules. Ultimately it can be developed into a one-stop haptic modeling tool that enables the user to more conveniently create a tangible CAD systems or a tangible e-ommerce system.

  • PDF

Control of axial segregation by the modification of crucible geometry

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.191-194
    • /
    • 2008
  • We will focus on the horizontal Bridgman growth system to analyze the transport phenomena numerically, because the simple furnace system and the confined growth environment allow for the precise understanding of the transport phenomena in solidification process. In conventional melt growth process, the dopant concentration tends to vary significantly along the crystal. In this work, we propose the modification of crucible geometry for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution. Numerical analysis has been performed to study the transport phenomena of dopant impurities in conventional and proposed Bridgman silicon growth using the finite element method and implicit Euler time integration. It has been demonstrated using mathematical models and by numerical analysis that proposed method is useful for obtaining crystals with superior uniformity along the growth direction at a lower cost than can be obtained by the conventional melt growth process.

Springback for the Warm 2D Draw-bending of Steel Sheets (박판의 온간 2차원 드로오 벤딩에서의 스프링백)

  • Lee S. M.;Chang S. H.;Choi Y. C.;Heo Y. M.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.75-80
    • /
    • 2001
  • The purpose of this study is to investigate the characteristics of springback for various process conditions of the 2D draw-bending operation. The process variables are the forming temperature, the geometry of tools such as punch profile radius(Rp) and die profile radius(Rd). Especially, in order to control the springback, the use of the warm forming method is applied. For the warm draw-bending, five steps of temperature ranges, from room temperature to $200^{\circ}C$, were adopted. And two kinds of steel sheets, namely SCP1 and TRIP(transformation-induced plasticity), the newly developed high strength Steel, were adopted. As a result, the springback was affected by the elevated temperature and the geometry of tools in two kinds of steel sheets.

  • PDF

Tool Shape Design for the Screw Flights Cutting in Twin Screw Extruder (2축 스크류 압출기의 스크류 가공용 공구형상 설계)

  • 최부희;정찬길;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.824-828
    • /
    • 2002
  • Twin screw extruders are the heart of the polymer processing industry. The single most important mechanical element of a screw extruder is the screw. The proper design of the geometry of the excluder screw is of crucial importance to the proper functioning of the extruder. If material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, Tool shape design for the screw flights cutting in twin screw extruder.

  • PDF

Analysis of Wrinkling INitiation and Growth in Cylindrical Cup Deep Drawing Process (원형컵 디프드로잉에서의 주름발생 해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.18-21
    • /
    • 1999
  • The wrinkling of thin sheet metal induced by compressive instability is one of major defects in sheet metal forming processes. compressive instability is influence by many factors such as mechanical properties of the sheet material geometry of the sheet contact conditions and plastic anisotropy. The analysis of compressive instability in a plastically deforming body is rather difficult because the effects of the above-mentioned factors are rather complex and the instability behavior may show swide variations even for small deviations of the factors. in this work the bifurcation theory is introduced for the finite elemental analysis of the instability behavior of a thin sheet with initially sound geometry and property. All the above-mentioned factors are conveniently considered by the finite element method. The instability limit is found by introducing a criterion scheme into the incremental analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme. Wrinkling initiation and growth in the deep drawing process are analyzed.

  • PDF

A Numerical Study on the Effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Jeon, Sang-Gyu;Yoon, Joon-Yong;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the effects of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

Characteristics Design on Flights Shape of the Extruder Screw (압출용 스크루의 날개형상에 대한 특성설계)

  • 최부희;최상훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.292-297
    • /
    • 2001
  • Twin screw extruders are the heart of the polymer processing industry. They are used at some stage in nearly all polymer processing operations. This paper is concerned with the basic elements of the extruder design. The proper design of the geometry of the extruder screw is of crucial importance to the proper functioning of the extruder. If the material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, a characteristic design on flights shape of the extruder screw. This paper presents cross section designs of a closely intermeshing twin screw extruder with double-flighted screw elements, and channel depth characteristics for a double flighted corotating self-wiping twin screw extruder.

  • PDF

비접촉 시일의 형상에 관한 누설특성 해석

  • 나병철;전경진;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.176-180
    • /
    • 1997
  • Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Flow is characterized into five categories according to its leakage path. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. This offers a methodological way of enhancement seal design for high speed spindle.

  • PDF

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF