• Title/Summary/Keyword: Geometrical structure

Search Result 658, Processing Time 0.023 seconds

A Polyline Watermarking Scheme for GIS Vector Map (GIS 벡터맵 폴리라인 워터마킹 방법)

  • Kim, Jun-Hee;Lee, Suk-Hwan;Kwon, Seong-Geun;Park, Seung-Seob;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.582-593
    • /
    • 2010
  • Recently the commercial value of GIS(geographic information system) has been increased with growing application demands of spatial information in life space. Also, GIS has been expanded to the integrated information system that provides the ease access to map information by public users and also the combined service of GIS map data and various multimedia contents. But several security problems of GIS map data have brought up at GIS industries, such as the illegal copy and distribution of GIS map data. Furthermore, the copyright protection of GIS map data has not been researched yet compared with image and video contents. This paper presents a polyline based watermarking scheme for the copyright protection of GIS vector map. The proposed scheme analyzes the structure of vector map and embeds adaptively the watermark by using the distance distribution of polyline components. From experimental results, we verified that the proposed scheme satisfies the invisibility and the robustness of geometrical attacks.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

Study of the Musical Spaces Composition in Daniel Libeskind Architecture (다니엘 리베스킨트 건축의 음악적 공간 구성에 관한 연구)

  • Song, Dae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.793-800
    • /
    • 2015
  • This study is to analyze correlation between Daniel Libeskind's architecture works and the effects as a series of music works be learning in youth and opera "Aron and Mose". The results showed that First, Libeskind created convergence of invisible line by borrowing the composition of freely flowed scales in score from his architecture. Second, he composed geometrical shapes of contrapuntal reiteration based on double tune in music structure, in other words forms of polyphonic proportion. and he expressed the geometrically, freely line rhythm by planning composition of multidimensional spaces, "Hybrid", planning the contrast of material, form by results of Intertextually combination between Architecture and Music. Third, he tried to express the pain, fear, anxiety, etc. of the past spatially, and constructed "the spaces of absence" on his works through inspiration from Arnold Sch$\ddot{o}$nberg's works.

Experimental Evidence and Analysis of a Mode Conversion of Guided Wave Using Magnetostrictive Strip Transducer (자기변형 스트립 탐촉자에 의한 유도초음파 모드 변환에 대한 실험적 검증 및 해석)

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that the wave patterns are relatively clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaws. However, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Mode converted signals from a realistic piping mockup were acquired and analysed. We found mode conversions between a torsional guided wave T(0,1) mode and a flexural F(1,3) or longitudinal L(0,2) mode generated by a magnetostrictive strip transducer. Based on the experimental observations, an interpretation of the source of the mode conversion is discussed in a viewpoint of electromagnetic properties and structure of the strip transducer.

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.

Mathematically Gifted Students' Justification Patterns and Mathematical Representation on a Task of Spatial Geometry (수학영재들의 아르키메데스 다면체 탐구 과정 - 정당화 과정과 표현 과정을 중심으로 -)

  • Lee, Kyong-Hwa;Choi, Nam-Kwang;Song, Sang-Hun
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.487-506
    • /
    • 2007
  • The aims of this study is figure out the characteristics of justification patterns and mathematical representation which are derived from 14 mathematically gifted middle school students in the process of solving the spatial tasks on Archimedean solid. This study shows that mathematically gifted students apply different types of justification such as empirical, or deductive justification and partial or whole justification. It would be necessary to pay attention to the value of informal justification, by comparing the response of student who understood the entire transformation process and provided a reasonable explanation considering all component factors although presenting informal justification and that of student who showed formalization process based on partial analysis. Visual representation plays an valuable role in finding out the Idea of solving the problem and grasping the entire structure of the problem. We found that gifted students tried to create elaborated symbols by consolidating mathematical concepts into symbolic re-presentations and modifying them while gradually developing symbolic representations. This study on justification patterns and mathematical representation of mathematically gifted students dealing with spatial geometry tasks provided an opportunity for understanding their the characteristics of spacial geometrical thinking and expending their thinking.

  • PDF

Research on a New Vision Test Chart Measuring Visual and Spatial Sense of Moire Fringes (무아레 무늬의 시각적 공간감각을 측정하는 시표로서의 가능성 조사)

  • Woo, Hyun Kyung;Lee, Seongjae;Jeong, Youn Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.241-245
    • /
    • 2010
  • Purpose: In this work we suggested a grating chart of vision test which could be used to measure the sense of distance and motion of object. Methods: A couple of gratings with periodic structure were fabricated. Through a lens the grating images showing geometrical shapes were projected on a vision test chart in order to form a new grating chart of vision test. In rotating and translating the gratings the examinee perceived the variation of position of gratings by the variation of the sense of distance and motion. Results: The results of the sense of distance and motion measured in rotating and translating the gratings showed the average errors of ~2.98% and ~1.73% at $\theta=15^{\circ}$ respectively compared to calculated values. Conclusions: The grating chart of vision test suggested in this work can be used as a new test chart that lets an examinee perceive a sense of distance and motion of object.

Navel Area Detection Based on Body Structure (신체의 구조를 기반으로 하는 배꼽 영역 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2185-2191
    • /
    • 2015
  • With the advance of the environment where we can get various multimedia contents, adult image detection has become an important issue these days. In this paper, we suggest a method of robustly detecting navel areas from input images which can be usefully utilized in adult image detection. The suggested algorithm first extracts face regions and extracts candidate nipple areas using a nipple map. Our method then selects only actual nipple regions by filtering candidate areas with geometrical features and an average nipple filter. Subsequently, the method robustly detects navel areas by using the structural relation with the nipple areas and applying edge and saturation images. Experimental results show that the suggested algorithm can effectively detect navel regions.

Geometrical Feature-Based Detection of Pure Facial Regions (기하학적 특징에 기반한 순수 얼굴영역 검출기법)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.773-779
    • /
    • 2003
  • Locating exact position of facial components is a key preprocessing for realizing highly accurate and reliable face recognition schemes. In this paper, we propose a simple but powerful method for detecting isolated facial components such as eyebrows, eyes, and a mouth, which are horizontally oriented and have relatively dark gray levels. The method is based on the shape-resolving locally optimum thresholding that may guarantee isolated detection of each component. We show that pure facial regions can be determined by grouping facial features satisfying simple geometric constraints on unique facial structure. In the test for over 1000 images in the AR -face database, pure facial regions were detected correctly for each face image without wearing glasses. Very few errors occurred in the face images wearing glasses with a thick frame because of the occluded eyebrow -pairs. The proposed scheme may be best suited for the later stage of classification using either the mappings or a template matching, because of its capability of handling rotational and translational variations.

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.