• 제목/요약/키워드: Geometrical beam

검색결과 251건 처리시간 0.022초

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

선택적 빔 차단을 통한 집속이온빔 가공 정밀도 향상 (Improvement of Ion Beam Resolution in FIB Process by Selective Beam Blocking)

  • 한민희;한진;김태곤;민병권;이상조
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.84-90
    • /
    • 2010
  • In focused ion beam (FIB) fabrication processes the ion beam intensity with Gaussian profile has a drawback for high resolution machining. In this paper, the fabrication method to modify the beam profile at substrate using silt mask is proposed to increase the machining resolution at high current. Slit mask is utilized to block the part of beam and transmit only high intensity portion. A nano manipulator is utilized to handle the silt mask. Geometrical analysis on fabricated profile through silt mask was conducted. By utilizing proposed method, improvement of machining resolution was achieved.

일정체적을 갖는 포물선형 중공 보-기둥의 자유진동 해석 (Free Vibration Analysis of Parabolic Hollowed Beam-columns with Constant Volume)

  • 이태은;이병구
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.384-391
    • /
    • 2011
  • This paper deals with free vibrations of the parabolic hollowed beam-columns with constant volume. The cross sections of beam-column taper are the hollowed regular polygons whose depths are varied with the parabolic functional fashion. Volumes of the objective beam-columns are always held constant regardless given geometrical conditions. Ordinary differential equation governing free vibrations of such beam-columns are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam-column parameters such as end constraints, side number, section ratio, thickness ratio and axial load are reported in tables and figures.

Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects

  • Karegar, Mohammad;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.129-137
    • /
    • 2022
  • Dynamic response of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Static analysis of cutout microstructures incorporating the microstructure and surface effects

  • Alazwari, Mashhour A.;Abdelrahman, Alaa A.;Wagih, Ahmed;Eltaher, Mohamed A.;Abd-El-Mottaleb, Hanaa E.
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.583-597
    • /
    • 2021
  • This article develops a nonclassical model to analyze bending response of squared perforated microbeams considering the coupled effect of microstructure and surface stress under different loading and boundary conditions, those are not be studied before. The corresponding material and geometrical characteristics of regularly squared perforated beams relative to fully filled beam are obtained analytically. The modified couple stress and the modified Gurtin-Murdoch surface elasticity models are adopted to incorporate the microstructure as well as the surface energy effects. The differential equations of equilibrium including the Poisson's effect are derived based on minimum potential energy. Exact closed form solution is obtained for bending behavior of the proposed model considering the classical and nonclassical boundary conditions for both uniformly distributed and concentrated loads. The proposed model is verified with results available in the literature. Influences of the microstructure length scale parameter, surface energy, beam thickness, boundary and loading conditions on the bending behavior of perforated microbeams are investigated. It is observed that microstructure and surface parameters are vital in investigation of the bending behavior of perforated microbeams. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams that commonly used in nanoactuators, nanoswitches, MEMS and NEMS systems.

Free vibration of deep curved FG nano-beam based on modified couple stress theory

  • Rahmani, O.;Hosseini, S.A.H.;Ghoytasi, I.;Golmohammadi, H.
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.607-620
    • /
    • 2018
  • Vibration analysis of deep curved FG nano-beam has been carried out based on modified couple stress theory. Material properties of curved Timoshenko beam are assumed to be functionally graded in radial direction. Governing equations of motion and related boundary conditions have been obtained via Hamilton's principle. In a parametric study, influence of length scale parameter, aspect ratio, gradient index, opening angle, mode number and interactive influences of these parameters on natural frequency of the beam, have been investigated. It was found that, considering geometrical deepness term leads to an increase in sensitivity of natural frequency about variation of aforementioned parameters.

컴플라이언트 메커니즘 설계를 위한 바닥 보 구조 기반 조인트 강성 조절법 (Ground Beam Structure Based Joint Stiffness Controlling Method for Compliant Mechanisms)

  • 장강원;김윤영;김명진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1187-1193
    • /
    • 2006
  • Traditionally, the continuum-based topology optimization methods employing the SIMP technique have been used to design compliant mechanisms. Although they have been successful, the optimized mechanisms by the methods are usually difficult to manufacture because of their geometrical complexities. The objective of this study is to develop a topology optimization method that can produce easy-to-fabricate mechanism structure. The proposed method is a ground beam method where beam connectivity is controlled by the beam joint stiffness. In this approach, beam joint stiffness determines the mechanism configuration. Because b the ground structure beams have uniform thicknesses varying only discretely, the resulting mechanism topologies become easily manufacturable.

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method

  • Guixiao Xu;F. Ming
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.349-359
    • /
    • 2023
  • Dynamic response and economic of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Dynamic bending of sandwich nanocomposite rock tunnels by concrete beams

  • Liji Long;D.L. Dung
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.407-416
    • /
    • 2024
  • Dynamic response of a rock tunnels by laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the exponential shear deformation theory (ESDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.