• 제목/요약/키워드: Geometrical beam

검색결과 248건 처리시간 0.023초

Quality Assurance System for Determination of Center Position in X-ray and Proton Irradiation Fields using a Stainless Ball and Imaging Plates in Proton Therapy at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.189-191
    • /
    • 2002
  • In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50$\square$m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm).

  • PDF

연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구 (A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment)

  • 손지민;박종섭
    • 한국방재학회 논문집
    • /
    • 제9권4호
    • /
    • pp.1-9
    • /
    • 2009
  • 본 논문은 등분포하중과 양끝단에 모멘트가 작용하는 계단식 변단면보(스텝보)의 비선형 횡-비틀림 좌굴에 대해 연구이다. 3차원 유한요소해석 프로그램인 ABAQUS(2007)와 회귀분석 프로그램 MINITAB(2006)이 단순보 경계조건을 가지고 있는 일단 또는 양단 변단면보의 설계 좌굴강도 산정식 개발에 적용되었다. 해석모델의 비지지길이 내 중앙부분의 플랜지는 폭 30.48cm, 두께 2.54cm로 고정되었으며, 양단 또는 일단 플랜지의 크기는 해석매개변수로 고려되었다. 양단 스텝보는 플랜지 해석매개변수를 고려하여 27개, 일단 스텝보는 36개의 해석모델이 하나의 하중조건에 적용되었다. 본 연구는 잔류응력과 초기변형을 고려하여 비탄성 구간 내 3가지 비지지길이와 5가지 하중조건이 고려된 총 945개의 해석모델을 고려하였다. 잔류응력의 분포는 Pi와 Trahair(1995)가 적용한 분포도를 사용하였으며, 초기변형은 현대제철의 제작기준인 형강길이의 0.1%조건을 적용하였다. 본 논문에 제안된 식과 유한요소해석결과를 비교분석한 결과 양단 스텝보에서는 최대 13%, 일단 스텝보에서는 최대 10%의 차이를 보이고 있다. 본 연구를 통해 개발된 식은 경제적이고 합리적인 설계에 적극활용 가능하며, 변단면 부재의 비탄성 좌굴강도 연구에 크게 기여할 것이다.

Calculating Array Patterns Using an Active Element Pattern Method with Ground Edge Effects

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.175-181
    • /
    • 2018
  • The array patterns of a patch array antenna were calculated using an active element pattern (AEP) method that considers ground edge effects. The classical equivalent radiation model of the patch antenna, which is characterized by two radiating slots, was adopted, and the AEPs that include mutual coupling were precisely calculated using full-wave simulated S-parameters. To improve the accuracy of the calculation, the edge diffraction of a ground plane was incorporated into AEP using the uniform geometrical theory of diffraction. The array patterns were then calculated on the basis of the computed AEPs. The array patterns obtained through the conventional AEP approach and the AEP method that takes ground edge effects into account were compared with the findings derived through full-wave simulations conducted using a High Frequency Structure Simulator (HFSS) and FEKO software. Results showed that the array patterns calculated using the proposed AEP method are more accurate than those derived using the conventional AEP technique, especially under a small number of array elements or under increased steering angles.

유전자 알고리듬을 이용한 트러스/보 구조물의 기하학적 치수 및 토폴로지 최적설계에 관한 연구 (A study on the optimal sizing and topology design for Truss/Beam structures using a genetic algorithm)

  • 박종권;성활경
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.89-97
    • /
    • 1997
  • A genetic algorithm (GA) is a stochastic direct search strategy that mimics the process of genetic evolution. The GA applied herein works on a population of structural designs at any one time, and uses a structured information exchange based on the principles of natural selection and wurvival of the fittest to recombine the most desirable features of the designs over a sequence of generations until the process converges to a "maximum fitness" design. Principles of genetics are adapted into a search procedure for structural optimization. The methods consist of three genetics operations mainly named selection, cross- over and mutation. In this study, a method of finding the optimum topology of truss/beam structure is pro- posed by using the GA. In order to use GA in the optimum topology problem, chromosomes to FEM elements are assigned, and a penalty function is used to include constraints into fitness function. The results show that the GA has the potential to be an effective tool for the optimal design of structures accounting for sizing, geometrical and topological variables.variables.

  • PDF

용접접합부의 형상계측을 위한 주사형 시각센서의 설계에 관한 연구 (A Study on Design of Visual Sensor Using Scanning Beam for Shape Recognition of Weld Joint.)

  • 배강열
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.102-110
    • /
    • 2003
  • A visual sensor consisted of polygonal mirror, laser, and CCD camera was proposed to measure the distance to the weld joint for recognizing the joint shape. To scan the laser beam of the sensor onto an object, 8-facet polygonal mirror was used as the rotating mirror. By locating the laser and the camera at axi-symmetrical positions around the mirror, the synchronized-scan condition could be satisfied even when the mirror was set to rotate through one direction continuously, which could remove the inertia effect of the conventional oscillating-mirror methods. The mathematical modelling of the proposed sensor with the optical triangulation method made it possible to derive the relation between the position of an image on the camera and the one of a laser light on the object. Through the geometrical simulation of the proposed sensor with the principal of reflection and virtual image, the optical path of a laser light could be predicted. The position and direction of the CCD camera were determined based on the Scheimpflug's condition to fit the focus of any image reflected from an object within the field of view. The results of modelling and simulation revealed that the proposed visual sensor could be used to recognize the weld joint and its vicinity located within the range of the field of view and the resolution. (Received February 19, 2003)

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석 (A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory)

  • 한봉구;방배산
    • 복합신소재구조학회 논문집
    • /
    • 제2권2호
    • /
    • pp.20-25
    • /
    • 2011
  • 본 논문에서는 2차원 콘크리트 슬래브 철도교량을 특별직교이방성 복합적층판 이론으로 해석하였다. 슬래브의 해석에 있어 단면의 기하학적, 물리적 특성이 중립면에서 휨-연계강성 $B_{ij}$ = 0 이고, $D_{16}=D_{26}=0$임을 고려하였다. 교량상판은 특별직교이방성 판으로 거동한다. 이러한 경계조건을 갖는 단면 혹은 불규칙한 단면을 갖는 시스템은 해석적 해를 구하기가 매우 어렵다. 이러한 문제에 대한 해석을 위해서 유한차분법이 이용되었다. 본 논문에서는 보 이론과 유한차분법이 해석을 위해 사용되었다.

겹침이음부와 부분층댐퍼가 부착된 보의 진동감쇠해석 (Analysis of the Vibration Damping of a Single Lap Joint Beam with Partial Dampers)

  • 박정일;최낙삼
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.26-35
    • /
    • 1999
  • 모달변형에너지법과 조화진동해석법을 이용하여 겹침이음부와 부분층댐버를 갖는 보에 대해 유한요소모델을 설정하고 진동감쇠특성을 연구하였다. 모달변형에너지법과 조화진동해석법으로 구한 계의 공진주파수와 손실계수는 거의 같은 값ㅇ르 보였으며, 형상의 변화에 따른 손실계수 변동경향은 이론해석에 의한 결과와 유사하였다. 부분층댐퍼의 위치, 점탄성층과 보강탄성층의 두께 및 탄성계수의 변화가 계의 손실계수에 미치는 영향을 파악하였으며, 점탄성층의 손실계수변화에 따른 영향도 검토하였다. 이들 결과로부터 계의 감쇠효과를 극대화하기 위한 구조물의 형상 및 물성조건을 제시하였다.

  • PDF

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure

  • Cao, Yan;Qian, Xueming;Fan, Qingming;Ebrahimi, Farbod
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.297-311
    • /
    • 2020
  • The main purpose of this study is to analyze the effects of external pressure on the vibration and buckling of functionally graded (FG) spherical panels resting of elastic medium. The material characteristics of the FG sphere continuously vary through the thickness direction based on the power-law rule. In accordance with first-order shear deformation shell theory and by the use of Ritz formulation the governing equations are presented. In this regard, the beam functions are applied in two-dimensions for different sets of boundary supports. The Winkler and Pasternak models of elastic foundations are also taken into account. In order to show the validity and applicability of the presented formulation, various comparison studies are given. Furthermore, a diverse range of numerical results is reported to check the impacts of geometrical and material parameters along with external pressure on the vibration and buckling analysis of FG spherical panels.