• Title/Summary/Keyword: Geometrical Shape

Search Result 513, Processing Time 0.026 seconds

Optimal design of shape of a working in cracked rock mass

  • Mirsalimov, Vagif M.
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-235
    • /
    • 2021
  • A criterion and a method for solving a problem on the prevention of mine working fracture under the action of tectonic and gravitational forces are offered. Based on minimal criterion, theoretical analysis of the definition of the optimal shape of working in the rock mass weakened by arbitrarily located rectilinear cracks was carried out. A closed system of algebraic equations allowing to minimize the stress state and stress intensity factors depending on mechanical and geometrical characteristics of the rock, is constructed. The relation between the shape of the working and the stress intensity factors and also location and sizes of the cracks is obtained. The found optimal shape of working increases load-bearing capacity of the rock.

Estimation of missing landmarks in statistical shape analysis

  • Sang Min Shin;Jun Hong Kim;Yong-Seok Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • Shape analysis is a method for measuring, describing and comparing the shape of objects in geometric space. An important aspect is to obtain Procrustes distance based on least square method. We note that the shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object. However, and unfortunately, when we cannot measure some landmarks which are some biologically or geometrically meaningful points of any object, it is not possible to measure the variation of all shapes of an object, including that of the incomplete object. Hence, we need to replace the missing landmarks. In particular, Albers and Gower (2010) studied the missing rows of configurations in Procrustes analysis. They noted that the convergence of their approach can be quite slow. In this study, alternatively, we derive an algorithm for estimating the missing landmarks based on the pre-shapes. The pre-shape is invariant under the location and scaling of the original configuration with the centroid size of the pre-shape being one. Therefore we expect that we can reduce the amount of total computing time for obtaining the estimate of the missing landmarks.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Morphological Shape Decomposition using Multiscan Mode (다중스캔 모드를 이용한 형태론적인 형상분해)

  • 고덕영;최종호
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In this study, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements that are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have the characteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

Algorithm of Morphological Multimode Binary Shape Decomposition (형태론적 다중모드 2진 형상분해 알고리즘)

  • Choi, Jong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.67-75
    • /
    • 1999
  • In this paper, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements tat are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have chatacteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

Shape Image Recognition by Using Histogram-based Correlation (히스토그램 기반 상관성을 이용한 모양영상 인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.548-553
    • /
    • 2010
  • This paper presents an effective shape image recognition method using the correlation based on 4-dimensional histogram. The histogram-based correlation is accurately applied to express the similarity by comparing the positions of a corresponding dimension between the images, which is calculated by considering 4 directions of the shape image. The correlation measure by using the normalized cross-correlation is also applied to obtain the robust recognition to the geometrical variations such as shape, position, size, and rotation. The proposed method has been applied to the problem for recognizing the 8 shape images of 64*64 pixels and the 30 shape images of 256*256 pixels. The experimental results show that the proposed method has a superior recognition performance that appears the image characters well.

Intelligent Simulation of Three-Dimensional Forging Process (삼차원 단조공정의 지능적 시뮬레이션)

  • Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.155-159
    • /
    • 2007
  • We conduct intelligent simulation of three-dimensional forging processes in this paper. A new remeshing technique is employed for this purpose. Not only the state variables including strain and strain-rate but also the geometrical features including die-material contact conditions and the characteristic lines or surfaces are taken into account during remeshing. The presented approach is applied to the Baden-Baden benchmark test example and its influence on the simulated results is discussed particularly in terms of the deformed shape with emphasis on the characteristic line.

  • PDF

Analysis of Plants Shape by Image Processing (영상처리에 의한 식물체의 형상분석)

  • 이종환;노상하;류관희
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 1996
  • This study was one of a series of studies on application of machine vision and image processing to extract the geometrical features of plants and to analyze plant growth. Several algorithms were developed to measure morphological properties of plants and describing the growth development of in-situ lettuce(Lactuca sativa L.). Canopy, centroid, leaf density and fractal dimension of plant were measured from a top viewed binary image. It was capable of identifying plants by a thinning top viewed image. Overlapping the thinning side viewed image with a side viewed binary image of plant was very effective to auto-detect meaningful nodes associated with canopy components such as stem, branch, petiole and leaf. And, plant height, stem diameter, number and angle of branches, and internode length and so on were analyzed by using meaningful nodes extracted from overlapped side viewed images. Canopy, leaf density and fractal dimension showed high relation with fresh weight or growth pattern of in-situ lettuces. It was concluded that machine vision system and image processing techniques are very useful in extracting geometrical features and monitoring plant growth, although interactive methods, for some applications, were required.

  • PDF

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

Effect of Material Removal per Tooth on the Axial Shape of Prismatically Milled Parts (공구날당 소재제거량이 각주형상 밀링가공물의 축방향 형상에 미치는 영향)

  • Kim Kwang Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.17-22
    • /
    • 2004
  • A study for investigating the effects of the cutting conditions (radial depth of cut feed per tooth) and the number of tooth on the side wall of prismatically milled workpiece is described. This study is available not only for understanding the geometrical characteristics of the end milled side wall but also for finding the optimal cutting conditions. In this work, the side wall geometry was characterized by the straightness and the location of maximum peak point. Through this study, it was revealed that the geometrical characteristics of the end milled side wall are strongly related to the material removal per tooth and the number of tooth.