• Title/Summary/Keyword: Geometrical Nonlinear

Search Result 314, Processing Time 0.034 seconds

Ultimate capacity of welded box section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.15-33
    • /
    • 2012
  • For an axially loaded box-shaped member, the width-to-thickness ratio of the plate elements preferably should not be greater than 40 for Q235 steel grades in accordance with the Chinese code GB50017-2003. However, in practical engineering the plate width-to-thickness ratio is up to 120, much more than the limiting value. In this paper, a 3D nonlinear finite element model is developed that accounts for both geometrical imperfections and residual stresses and the ultimate capacity of welded built-up box columns, with larger width-to-thickness ratios of 60, 70, 80, and 100, is simulated. At the same time, the interaction buckling strength of these members is determined using the effective width method recommended in the Chinese code GB50018-2002, Eurocode 3 EN1993-1 and American standard ANSI/AISC 360-10 and the direct strength method developed in recent years. The studies show that the finite element model proposed can simulate the behavior of nonlinear buckling of axially loaded box-shaped members very well. The width-to-thickness ratio of the plate elements in welded box section columns can be enlarged up to 100 for Q235 steel grades. Good agreements are observed between the results obtained from the FEM and direct strength method. The modified direct strength method provides a better estimation of the column strength compared to the direct strength method over the full range of plate width-to-thickness ratio. The Chinese code and Eurocode 3 are overly conservative prediction of column capacity while the American standard provides a better prediction and is slightly conservative for b/t = 60. Therefore, it is suggested that the modified direct strength method should be adopted when revising the Chinese code.

Design of Bridge Transport System with Equal Incremental Telescopic Motion (동일신축 텔레스코픽모션을 갖는 천정이동장치 설계)

  • Yoon, Kwang-Ho;Lee, Hyo-Jik;Lee, Jong-Kwang;Park, Byung-Suk;Kim, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.227-235
    • /
    • 2010
  • This paper introduces the design of a bridge transport system with a telescopic tube for positioning equipment to perform remote handling tasks in a radioactive facility. It consists of an extensible and retractable telescopic tube assembly for z-direction motion, a cabling system for management of power and signal cables, and a trolley system for transverse motion and accommodating servo drives. The working environment for the bridge transport system with the telescopic tube requires strict geometrical constraints, including a short height, short telescopic tube length when retracted, and a long stroke. These constraints were met by solving a nonlinear programming problem involving the optimal dimensions. This paper introduces a cabling system for effective management of cables with changeable lengths to accommodate telescopic motions and a selection guide for servo drives that are sufficient to drive the system.

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

A Nonlinear Finite Element Formulation for Very Large Deformation based on Updated Material Reference Frame (변화되는 재료의 기준 물성치에 근거한 매우 큰 변화에 대한 비선형 유한요소의 정식화)

  • Yun, Young Muk;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.25-37
    • /
    • 1992
  • A nonlinear finite element formulation which has the capability of handling very large geometrical changes is presented. The formulation is based on an updated material reference frame and hence true stress-strain test can be directly applied to properly characterize properties of materials which are subjected to very large deformation. For the large deformation, a consistent formulation based on the continuum mechanics approach is derived. The kinematics is referred to an updated material frame. Body equilibrium is also established in an updated geometry and the second Piola-Kirchhoff stress and the updated Lagrangian strain tensor are used in the formulation. Numerical examples for very large deformation of framed structures and plane solids are analyzed for verification purposes. The numerical solutions are obtained by an incremental numerical procedure. The importance of handing material properties properly is also demonstrated.

  • PDF

Stability Analysis for CWR on the Railway Bridges by Linearized Method (선형해석법을 이용한 교량상 장대레일의 안정성 해석 방법 연구)

  • Choi, Young-Gil;Oh, Ju-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.472-480
    • /
    • 2009
  • The stability analysis for CWR is difficult in the theory itself because both geometric and material nonlinearity should be considered. Also the analysis results are varied according to the loading history. In contrast to the complexity in the theory, the analysis results for CWR on the railway bridges are quite simple and can be predicted because of a small buckling effect and its negligible nonlinearity. In this study, refined nonlinear analysis methods for the stability analysis of CWR on the railway bridges were developed which consider only material nonlinearity beeause the effects of geometric nonlinearity are nominal. In this study, the analysis results can be found within limited number of iterations with idealized linear force-displacement relationship. From the analysis result comparisons, it was found that the stability analysis for CWR on the railway bridges can be performed effectively by this method.

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

The Prediction of Nonlinear behavior of Double Coil Shape Memory Alloy Spring (이중 나선 구조 형상기억합금 스프링 거동 예측)

  • Lee, Jong-Gu;Ahn, Sung-Min;Cho, Kyu-Jin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • The recovery force and displacement occur due to the phase transformation from the martensite phase to the austenite phase induced by the mechanical loading or thermal loading. These recovery force and displacement depend on an initial geometrical configuration of SMAs and loading conditions. Although the SMAs generally generates large recovery forces, the sufficient recovery displacement cannot be expected without a proper design strategy. The functionality of SMAs is limited due to the unbalance between the large recovery force and the small recovery displacement. This study suggests the double coil SMA spring in order to amplifying the recovery displacement induced by the phase transformation. By predicting the recovery displacement of doble coil SMA springs and one coil SMA springs induced by thermal loading, we show that the double coil SMA spring not only mitigate the unbalance of performance but also have a large recovery displacement for its recovery force than one coil SMA spring.

Effects of the Excitation Level on the Dynamic Characteristics of Electrical Cabinets of Nuclear Power Plants (진동수준이 원자력발전소 전기 캐비닛의 동특성에 미치는 영향)

  • Cho, Sung-Gook;Kim, Doo-Kie;Go, Sung-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2010
  • Seismic qualification (SQ) is required prior to the installation of safety related electrical cabinets in nuclear power plants (NPPs). Modal identification of the electrical equipment is one of the most significant steps to perform SQ, and is an essential process to construct a realistic analytical model. In this study, shaking table tests were conducted to identify a variation of the dynamic characteristics of a seismic monitoring system cabinet installed in NPPs according to the excitation level. Modal identification of the cabinet has been performed by a frequency domain decomposition method. The results of this study show that the dynamic properties of the cabinet are nonlinearly varied according to the excitation level and the specimen behaves significantly in a nonlinear manner under safe shutdown earthquake motion in Korea. The main sources of the nonlinear behavior of the specimen have been judged by friction forces and geometrical nonlinearity rather than material nonlinearity. The nonlinear variation of the dynamic characteristics of the electrical cabinet might be accepted as an important fact that should be considered during the SQ of safety related equipment.

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder (초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석)

  • Makhbal, Tsas-Orgilmaa;Kim, Do-Hyun;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2018
  • The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.

Thickness Effect on Wrinkle-Crease Interaction for Thin Membrane (접힌자국이 있는 멤브레인에서 두께에 따른 주름거동의 변화)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.421-426
    • /
    • 2010
  • In this paper, the thickness effect on the wrinkle-crease interaction behavior of corner-loaded creased square membranes was studied using geometrically nonlinear post-buckling analysis. The membranes were modeled using shell elements, and the meshes were seeded with semi-random geometrical imperfection to instigate the buckling deformation. Results indicated that the wrinkle-crease interaction behavior was significantly dependent on the membrane thickness. Both the global and local wrinkles developed earlier as the thickness decreased. It was also found that the wrinkling behavior depended on the initial deployment angle in which the local wrinkle initiation occurred earlier, while the global wrinkle formation was delayed as the angle increased.