• Title/Summary/Keyword: Geometric structure

Search Result 994, Processing Time 0.03 seconds

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF

A Study on Deploying Time of Active Hood Lift System of Passenger Vehicles with Principal Design Parameters (중요 설계변수에 따른 승용차 능동후드리프트 시스템의 전개시간 연구)

  • Lee, Tae-Hoon;Yoon, Gun-Ha;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • This research investigates the deployment time of an active hood lift system(AHLS) activated a gunpowder actuator for the passenger vehicle. The deployment time of the system is investigated by changing the principal design parameters of the system. In order to achieve this goal, after introducing the geometric structure and operating principle of the AHLS, the dynamic equations of the system are formulated for deploying motion. Subsequently, using the dynamic equations, the deployment time of the system is determined by changing several geometric design parameters such as location of actuator. It is then identified which design parameters are main factors to affect the deployment time of AHLS.

ON THE SETS OF LENGTHS OF PUISEUX MONOIDS GENERATED BY MULTIPLE GEOMETRIC SEQUENCES

  • Polo, Harold
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1057-1073
    • /
    • 2020
  • In this paper, we study some of the factorization aspects of rational multicyclic monoids, that is, additive submonoids of the nonnegative rational numbers generated by multiple geometric sequences. In particular, we provide a complete description of the rational multicyclic monoids M that are hereditarily atomic (i.e., every submonoid of M is atomic). Additionally, we show that the sets of lengths of certain rational multicyclic monoids are finite unions of multidimensional arithmetic progressions, while their unions satisfy the Structure Theorem for Unions of Sets of Lengths. Finally, we realize arithmetic progressions as the sets of distances of some additive submonoids of the nonnegative rational numbers.

A study on the solution stability by the position of internal nodes in hihger order isoparametric elements (고차 등매개요소에서 내부절점의 위치와 해의 안정성 연구)

  • Lee, Joon-Hee;Lim, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.1973-1983
    • /
    • 1997
  • Higher order isoparametric elements are usually used in the finite element analysis because they can represent easily the geometric shape of a complex structure ad can improve the solution quality. When these elements are used, the position of internal nodes affects greatly on the solution accuracy. Decreasing of the accuracy related to the position of internal nodes is due to non-conformal mapping often results in an unstable Jacobian value. This paper, in order to remove this difficulty, suggests a modified shape function which can establish conformal mapping between two coordinate systems. Numerical experiments with the proposed shape function show that a stable solution can be obtained without respect to the position of internal nodes, and offer convenience that one can take arbitrarily the position of internal nodes considering only the geometric shape of element boundaries.

Dynamic Simulation of Underwater Vehicle-Manipulator Systems Using Principle of Dynamical Balance (동적 발란스의 원리를 이용한 수중 잠수정-매니퓰레이터 시스템의 동역학 시뮬레이션)

  • Han, Jong-Hui;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.152-160
    • /
    • 2007
  • In this paper, two schemes are introduced for dynamic simulation of underwater robotic systems. One is principle of dynamical balance, which is an easy and powerful tool for formulating dynamic equations of composite systems such as underwater vehicle-manipulator system. In the dynamic modeling, this principle gives us the closed-form of dynamic equations on matrix Lie group. The other is geometric integration algorithm, called 4-th order explicit Munthe-Kaas method. By this method, the derived differential equations can be integrated preserving geometric structure. Adopting these two schemes, dynamic simulation of underwater vehicle- manipulator system can be conducted more easily and more reliably.

  • PDF

A PRICING METHOD OF HYBRID DLS WITH GPGPU

  • YOON, YEOCHANG;KIM, YONSIK;BAE, HYEONG-OHK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.277-293
    • /
    • 2016
  • We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.

Developement of Three-Dimensional Mathematical Spinal Model (척추의 3차원 수학적 척추 모델 개발)

  • 한정수;안태정;이태희
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.189-201
    • /
    • 2000
  • Mechanical factors in the human body are considered to play a dominant role in low back problems. Various spinal structures. including muscles, act in unison to resist the external load. An estimation of the muscle forces in this structure requires a knowledge of the orientation, location and area of cross-section of the muscles to complete the formulation of a truly three-dimensional mathematical model of the spine. The geometric parameters which are calculated were the line of action, the centroid and physiologic area of cross-section of each muscle as a function of the spinal level. This geometric data were obtained from CT scans of 11 subjects participating in this study.

  • PDF

Transient Response Analysis of Locally Nonlinear Structures Using Substructure-Based-State Equations (부분구조의 상태방정식을 이용한 국부 비선형계의 과도응답해석)

  • 김형근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2457-2466
    • /
    • 1993
  • A simple method is presented for determining transient responses of locally nonlinear structures using substructure eigenproperties and Lagrange multiplier technique. Although the method is based upon the mode synthesis formulation procedure, the equations of the combined whole structure are not constructed compared with the conventional methods. Lagrange multi-pliers are used to enforce the conditions of geometric compatibility between the substructure interfaces and they are treated as external forces on each substructure itself. Substructure eigenvalue problem is defined with the substructure interface free of fixed. The transient analysis is based upon the recurrence discrete-time state equations and offers the simplicity of the Euler integration method without requiring small time increment and iterative solution procedure. Numerical examples reveal that the method is very accurated and efficient in calculating transient responses compared with the direct numerical integration method.

Investigation of Applications Technology for High Resolution SAR Images (고해상도 SAR 영상의 활용기술 동향분석)

  • Yoon, Geun-Won;Koh, Jin-Woo;Lee, Yong-Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2010
  • SAR(Synthetic Aperture Radar) has characteristics well-suited for the measurement of geophysical parameters during day and night in all weather conditions. Recently, SAR data with high resolution acquired by satellites became available to the public. In such data, many features and phenomena of geometric structure of man-made objects and natural environments become observable. In this paper, we discuss main considerations including geometric distortion and coregistration for efficient utilization of high resolution SAR images. And, various advanced technologies in SAR application fields are introduced.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads (선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.