• 제목/요약/키워드: Geometric parameter

검색결과 360건 처리시간 0.024초

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

BMT 구동장치의 유한요소해석 및 형상변수 최적화 (Finite Element Analysis and Geometric Parameter Optimization for BMT Driving Assembly)

  • 박영환;곽재섭;엄가정
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.178-183
    • /
    • 2010
  • Base-mounted type(BMT) driving assembly in CNC machine tools is an indispensable part to improve productivity by reducing tool changeover time and to meet the ever-increasing demand of precision machine tools. This study aimed to perform finite element analysis and geometric parameter optimization to improve the efficiency of BMT driving assembly. First, simulations for three-dimensional structural and vibration analysis were performed using ANSYS/Workbench on the initial geometric models of BMT driving assembly. After analyzing stress and deformation concentration zones, several new geometrical models were designed and evaluated by design of experiments and ANSYS/DesignXplorer. Through a series of analysis-evaluation-modification cycles, it was seen that designed models were effective in determining optimal geometry of BMT driving assembly.

Representation of Uncertain Geometric Robot Environment Using Fuzzy Numbers

  • Kim, Wan-Joo-;Ko, Joong-Hyup;Chung, Myung-Jin
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1211-1214
    • /
    • 1993
  • In this paper, we present a fuzzy-number-oriented methodology to model uncertain geometric robot environment and to manipulate geometric uncertainty between robot coordinate frames. We describe any geometric primitive of robot environment as a parameter vector in parameter space. Not only ill-known values of the parameterized geometric primitive but the uncertain quantities of coordinate transformation are represented by means of fuzzy numbers restricted to appropriate membership functions. For consistent interpretation about geometric primitives between different coordinate frames, we manipulate these uncertain quantities using fuzzy arithmetic.

  • PDF

Form Parameter Design 을 이용한 선형최적화 (Hull Form Optimization Based on From Parameter Design)

  • 이연승;최영복
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.562-568
    • /
    • 2009
  • Hull form generation and variation methods to be mainly discussed in this study are based on the fairness optimized B-Spline form parameter curves (FOBFC). These curves can be used both as indirect modification function for variation and as geometric entities for hull form generation. The flexibility and functionality of geometric control technique play the most important role for the success of hull form optimization. This study shows the hydrodynamic optimization process and the characteristics of optimum design hull forms of a 14,000TEU containership and 60K LPG carrier. SHIPFLOW has been used as a CFD solver and FS-Framework as a geometric modeler and optimizer.

B-spline 곡면보간을 위한 parameter 결정에 관한 연구 (Parametrization in B-spline Surface Interpolation)

  • 정형배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.957-960
    • /
    • 1995
  • A new method is introduced for the parametrization in B-spline surface interpolation. THis method uses the basis function to assign the parameter values to the arbitrary set of geometric data. This method gives us several important advantages in geometric modeling.

  • PDF

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

기하학적 초기형상결함을 갖는 보강 원통의 충격좌굴 신뢰성 해석 (Impact Buckling Reliability Analysis of Stiffened Cylinder With Initial Geometric Imperfection)

  • 김두기
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.735-747
    • /
    • 1996
  • In this paper, buckling reliability analyses of stiffened cylinder with random initial geometric imperfection under axial impact load are performed by the combined response surface method. The effect of random geometric imperfection on the failure probability and reliability is recognized quantitatively. Buckling reliability decreases with the increase of mean value, cov of initial geometric imperfection under the same external load. Buckling probability under impact load is greater than those under static load with the same condition. From the probabilistic characteristics of imapct buckling load, relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. And those results can be used to determine the range of required safety parameter and acceptable imperfaction.

  • PDF

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

초기하분포의 모수에 대한 신뢰구간추정 (On the actual coverage probability of hypergeometric parameter)

  • 김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1109-1115
    • /
    • 2010
  • 본 연구는 질병자료나 사망자수 등과 관련된 자료의 분석에서 가장 많이 사용되는 초기하분포의 모수, 즉 성공의 확률에 대한 신뢰구간추정에 대하여 설펴보았다. 초기하분포의 성공의 확률에 대한 신뢰구간은 일반적으로 잘 알려져 있지 않으나 그 응용성과 활용성의 측면에서 신뢰구간의 추정은 상당히 중요하다. 본 논문에서는 초기하분포의 성공의 확률에 대한 정확신뢰구간을 소개하고 여러 가지 모집단의 크기와 표본수에 대하여, 그리고 몇가지 실현값에 대한 신뢰구간을 유도하고 소표본의 경우에 모의실험을 통하여 실제 포함확률의 측면에서 살펴보았다.

NOVEL GEOMETRIC PARAMETERIZATION SCHEME FOR THE CERTIFIED REDUCED BASIS ANALYSIS OF A SQUARE UNIT CELL

  • LE, SON HAI;KANG, SHINSEONG;PHAM, TRIET MINH;LEE, KYUNGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.196-220
    • /
    • 2021
  • This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.