• Title/Summary/Keyword: Geometric method

Search Result 3,010, Processing Time 0.034 seconds

Estimation of Geometric Error Sources of Suspension Bridge using Survey Data (측량 데이터를 이용한 현수교의 형상오차 원인 추정)

  • Park, Yong Myung;Cho, Hyun Jun;Cheung, Jin Hwan;Kim, Nam Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2007
  • The study discussed in this paper presents a method of estimating sources of geometric errors in suspension bridges in use, based on geometric survey data. A geometric error is defined as the difference between the survey data and the design geometry of a main cable. It is assumed that the geometric error in a suspension bridge is caused by the variations in the weight of the stiffening girder and the deformation of the anchorage foundations due to the creep of soil. The variations in the girder weight and the deformation of the foundation were estimated by constructing a matrix of factors that affect suspension bridges due to the variations. To check the validity of the proposed method, it was applied to the Kwang-An Bridge, and the sources of geometric errors in the bridge were estimated using the survey data.

Assessing the Geometric Integrity of Cylindrical Storage Tanks: A Comparative Study Using Static Terrestrial Laser Scanning and Total Station

  • Mansour Alghamdi;Jinha Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.243-255
    • /
    • 2024
  • This study compares Static Terrestrial Laser Scanning (STLS)with the conventional Total Station (TS) method for the geometric assessment of cylindrical storage tanks. With the crucial need for maintaining tank integrity in the oil and gas industry, STLS and TS methods are evaluated for their efficacy in assessing tank deformations. Using STLS and TS, the roundness and verticality of two cylindrical tanks were examined. A deformation analysis based on American Petroleum Institute (API) standards was then provided. Key objectives included comparing the two methods according to API standards, evaluating the workflow for STLS point cloud processing, and presenting the pros and cons of the STLS method for tank geometric assessment. The study found that STLS, with its detailed and high-resolution data acquisition, offers a substantial advantage in having a comprehensive structural assessment over TS. However, STLS requires more processing time and prior knowledge about the data to tune certain parameters and achieve accurate assessment. The project outcomes intend to enhance industry professionals' understanding of applying STLS and TS to tank assessments, helping them choose the best method for their specific requirements.

Development of Meshless Method Using Least-Squares Method with Geometric Conservation Law for Structural Dynamic Analysis (기하학적 보존을 만족하는 최소제곱법을 활용한 무격자 구조해석 기법 개발)

  • Sang Woo Lee;Jin Young Huh;Kyu Hong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • A meshless technique using the geometric conservation least-squares method (GC-LSM) was devised to discretize the governing equation of linear elasticity. Although the finite-element method is widely used for structural analysis, a meshless method was developed because of its advantages in a moving grid system. This work is the preliminary phase for developing a fully meshless-based fluid-structure interaction solver. In this study, Cauchy's momentum equation was discretized in strong form using GC-LSM for the structural domain, and the Newmark beta method was used for time integration. The solver was validated in 1D, 2D, and 3D benchmarking problems. Static and dynamic results were obtained. The results are more accurate than those of analytic solutions.

A Study on the Geometric Optimization of Truss Structures by Decomposition Method (분할최적화 기법에 의한 트러스 구조물의 형상최적화에 관한 연구)

  • 김성완;이규원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.73-92
    • /
    • 1987
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the cross-sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes, loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures, which can eliminate the above mentioned limitations, is developed in this study. The algorithm proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton Raphson method. In the second level, which also consists of two phases the geometric shape is optimized utillzing the unindirectional search technique of the Powell method which make it possible to minimize only the objective functlon. The algorithm proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two- levels algorithm proposed in this study is safely applicable to any design criteria, and the convergency rate is relatively fast and stable compared with other iteration methods for the geometric optimization of truss structures. It was found for the result of the shape optimization in this study to be decreased greatly in the weight of truss structures in comparison with the shape optimization of the truss utilizing the algorithm proposed with the other area optimum method.

  • PDF

ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with $1{\leq}k{\leq}d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

Geometric Path Tracking and Obstacle Avoidance Methods for an Autonomous Navigation of Nonholonomic Mobile Robot (비홀로노믹 이동로봇의 자율주행을 위한 기하학적 경로 추종 및 장애물 회피 방법)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.771-779
    • /
    • 2010
  • This paper presents a method that integrates the geometric path tracking and the obstacle avoidance for nonholonomic mobile robot. The mobile robot follows the path by moving through the turning radius given from the pure pursuit method which is the one of the geometric path tracking methods. And the obstacle generates the obstacle potential, from this potential, the virtual force is obtained. Therefore, the turning radius for avoiding the obstacle is calculated by proportional to the virtual force. By integrating the turning radius for avoiding the obstacle and the turning radius for following the path, the mobile robot follows the path and avoids the obstacle simultaneously. The effectiveness of the proposed method is verified through the real experiments for path tracking only, static obstacle avoidance, dynamic obstacle avoidance.

Multi-Objective Geometric Optimal Design of a Linear Induction Motor Using Design of Experiments and the Sequential Response Surface Method (실험계획법과 순차적 반응표면법을 이용한 선형 모터의 다중 목적 형상최적설계)

  • Ryu, Tae-Hyung;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.726-732
    • /
    • 2009
  • In many industries, the linear motor replaces the existing framework for linear transportation. Similar to other conventional motors, it is important to minimize the ripple of thrust and to maximize the thrust force of the linear motor. Because the two objectives are associated to each other, the multi-objective design process is necessary considering all objectives. This paper intends to optimize geometric parameters of the linear motor with two design objectives using design of experiments and sequential response surface method.

Fast key-frame extraction for 3D reconstruction from a handheld video

  • Choi, Jongho;Kwon, Soonchul;Son, Kwangchul;Yoo, Jisang
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • In order to reconstruct a 3D model in video sequences, to select key frames that are easy to estimate a geometric model is essential. This paper proposes a method to easily extract informative frames from a handheld video. The method combines selection criteria based on appropriate-baseline determination between frames, frame jumping for fast searching in the video, geometric robust information criterion (GRIC) scores for the frame-to-frame homography and fundamental matrix, and blurry-frame removal. Through experiments with videos taken in indoor space, the proposed method shows creating a more robust 3D point cloud than existing methods, even in the presence of motion blur and degenerate motions.

New Geometric modeling method: reconstruction of surface using Reverse Engineering techniques

  • Jihan Seo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.565-574
    • /
    • 1999
  • In reverse engineering area, it is rapidly developing reconstruction of surfaces from scanning or digitizing data, but geometric models of existing objects unavailable many industries. This paper describes new methodology of reverse engineering area, good strategies and important algorithms in reverse engineering area. Furthermore, proposing reconstruction of surface technique is presented. A method find base geometry and blending surface between them. Each based geometry is divided by triangular patch which are compared their normal vector for face grouping. Each group is categorized analytical surface such as a part of the cylinder, the sphere, the cone, and the plane that mean each based geometry surface. And then, each based geometry surface is implemented infinitive surface. Infinitive average surface's intersections are trimmed boundary representation model reconstruction. This method has several benefits such as the time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be applied 3D scanner and 3D copier.

  • PDF

Calibration of Geometric Errors of a Parallel Manipulator Using a Sensor of Length Measurement (길이 측정 센서를 이용한 병렬기구의 기하학적 오차 보정)

  • Choi, Woo-Chun;Lim, Hyun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.94-100
    • /
    • 2000
  • This paper proposes a method of geometric error calibration for a parallel using only sensor of length measurement without additional sensors. The concept is generalized which creates measurement residuals by exploring conflicting information provided with external length sensing. Although this calibration method requires many configurations, it has an advantage of using relatively simple length measurements. This method is shown to provide good calibration results, especially when there exist smaller measurement noises and more configurations are measured.

  • PDF