• 제목/요약/키워드: Geometric error

검색결과 581건 처리시간 0.03초

연삭력을 이용한 공작물의 형상오차 예측 (Geometric Error Prediction of Ground Surface by Using Grinding Force)

  • 하만경;지용주;곽재섭
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.9-16
    • /
    • 2004
  • Because a generated heat during grinding operation makes a serious deformation on a ground surface as a convex form, a real depth of cut in deformed zone has larger than an ideal depth of cut. Consequently, the ground surface has a geometric error as a concave form after cooling the workpiece. In this study, the force and the geometric error of surface grinding were examined. From evaluating magnitude and mode of the geometric error according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error. In addiction the relationship between the geometric error and the grinding force was found out. Due to least square regression it was able to predict the geometric error by using the grinding force.

정연삭력 제어를 이용한 형상정도 향상 (Improvement of Geometric Accuracy Using Constant Force Control)

  • 김동식;김강석;홍순익;김남경;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.157-161
    • /
    • 1996
  • In the geometric accuracy, most of studies have been concentrated on the analysis of the geometric error, or a control path of grinding using the value of measured geometric error. In this paper, by using the value of measured motor current through hall sensor, detection of the geometric error have been accomplished, and in-process control path of grinding for improvement geometric accuracy, too.

  • PDF

연삭력 변화량이 공작물의 형상오차에 미치는 영향 (Effect of Change of Grinding Force on Geometric Error)

  • 지용주;이상진;박후명;오상록;하만경
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.10-17
    • /
    • 2004
  • A real depth of cut in deformed zone has larger than an ideal depth of cut. So the heat generated during grinding operation makes the deformation of a workpiece surface as convex farm. Consequently the workpiece surface remains a geometric error as concave form after cooling In this study, the grinding force and the geometric error were examined in surface grinding. Through magnitude and mode of geometric error were evaluated according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error In addition, the relationship between the geometric error and the grinding force was examined. Due to least square regression, It was possible to predict the geometric error by using the grinding force.

  • PDF

형상 재 설계에 의한 공작기계 기하오차 보정 (Geometric error compensation of machine tools by geometry redesign)

  • 서성교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

레이져 광학장치를 이용한 온라인 5 자유도 오차측정에 관한연구 (A Study on On-line 5 Degrees of Freedom Error Measurement using Laser Optical System)

  • 김진상;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 1995
  • Although laser interferometer measurement system has the advantage of range and accuracy, the traditional error measurement methods for geometric errors(two straightness and three angular errors) of a machine tool measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric error of a moving body, an on-line measurement system for simultaneous detection of the five error components of a moving axis is required. An on-line measurement system with 5 degrees of freedom was developed for geometric error detection. Performance verification of the system was performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a side of machine tool.

  • PDF

형상오차가 원통형 정전용량 변위센서의 축 회전오차의 측정에 미치는 영향 (Effects of Geometric Errors on the Measurement of Error Motions of Rotor with the Cylindrical Capacitive Displacement Sensor)

  • 안형준;장인배;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.487-490
    • /
    • 1995
  • This paper discisses the effects geometric errors on the measurement of error motions of rotor with the cylindrical capacitive displacement sensor. Analytic model of the measuring process with this sensor is derived and this model shows that the effect of geometric errors of sensor is larger than that of rator on the measurement of error motions of rotor. The computer simulation shows effect of periodic errors in this sensor on the measuring orbit.

  • PDF

5축 공작기계에서 회전 테이블의 반경 오차 성능 평가 (Performance Evaluation of Radial Error of a Rotary Table at Five-axis Machine Tool)

  • 이광일;양승한
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.208-213
    • /
    • 2012
  • In this paper, the radial error of a rotary table at five-axis machine tool is evaluated by utilizing ISO 230-2 and estimation method using double ball-bar. The geometric error of a rotary table is defined as position dependent geometric errors or position independent geometric errors according to their physical character. Then estimation method of geometric errors using double ball-bar is simply summarized including measurement path, parametric modeling and least squares approach. To estimate representative radial error, offset error, set-up error which affect to the double ball-bar data, mean value of measured data including CCW/CW-direction are used at estimation process. Radial errors are separated from measured data and used for evaluation with ISO 230-2. Finally, suggested evaluation method is applied to a rotary table at five-axis machine tool and its result is analyzed to improve the accuracy of the rotary table.

다구찌기법에 의한 연삭가공물의 형상오차 분석 및 최적화 (Analysis and Optimization of Geometric Error in Surface Grinding using Taguchi Method)

  • 지용주;황영모;윤문철;류인일;하만경
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.13-19
    • /
    • 2004
  • This paper deals with the analysis of geometric error and the optimization of process parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

반구상의 나선형 볼바측정을 통한 수직형 머시닝 센터의 오차 해석 및 보정 (Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Center Using Hemispherical Helix Ball Bar Test)

  • 양승한;김기훈;박용국
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.34-40
    • /
    • 2002
  • Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.

접촉식 3점지지법에 의한 내경측정의 기하학적 오차 해석 (Geometric Error Analysis of Contact Type Three Points Supporting Method for Inner Diameter Measurement)

  • 김민호;김태영
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.69-76
    • /
    • 2008
  • Inner diameter of bearing race is automatically measured by complete inspection system after grinding process. Contact type three points supporting method is widely applied to automatic inner diameter measurement because of its excellent stability. However, the geometric consideration regarding three points supporting method is not sufficient. In this study, the error equation from geometric error analysis of three points supporting method is found. The effect of factors in the error equation is also investigated. The error equation is linear for difference of diameter in sample and master on range of tolerance. An error becomes more and more larger, when the distance of two supporting balls or the diameter of supporting ball are increased. In the result, some considerations are proposed for measurement of inner diameter by the three points supporting method.