• 제목/요약/키워드: Geometric equivalence

검색결과 16건 처리시간 0.023초

다수 부분 예혼합 화염의 화염날림 유속 확대 (Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits)

  • 이병준;김진현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF

Frank Lloyd Wright의 건축작품에 나타난 라이트의 공간 해석과 구성방법에 관한 연구(硏究) (A Study on F. L. Wright's Interpretation of the Space and the Method of the Composition in his architectural works)

  • 오장환;이강업
    • 건축역사연구
    • /
    • 제7권4호
    • /
    • pp.29-47
    • /
    • 1998
  • The aim of this study is to understand the original methods of architectural composition in F. L. Wright's works, For this purpose, the principal thoughts based on his organic architecture was examined over all others, and the results of this study are as follows. 1. F. L. Wright knew Taoist Philosophy, especially Lao-tzu's thought about space based on traditional oriental arts included traditional japanese arts by his superior intuition. this is similar to Froebel Thought in the principal theory, that is, his own unique field of abstract architectural education with three-dimensional geometry learned through Froebel Gifts. 2. Space is reality ; such Lao-tzu's thought, reversed the sense of values, influenced F. L. Wright's way to accomplish his own continuous space. that is to say, he attempted taking precedence of spatial organization by the unit of three-dimensional module made the substance, Froebel Blocks (3, 4, 5, 6 Gifts) into non-substance, and trying to do the methods of continuous liberal composition in architecture. which is his original accomplishment, namely his mentioned 'democratic' because of judging the space and the mold of architecture as individualities. 3. F. L. Wright treated the space as a positive entity, so that he created his own architecture organically combined with spaces and forms. : This was the result that he comprehended both formative, physical worth in West and spatial, non-physical worth in East as equivalence. It is understood that F. L. Wright's works combined with East and West are the significance of his architecture and the progress of true internationalities and modernization in modern architecture. 4. From the analyses of his works, we knew the fact that F. L. Wright's architecture, especially in the spatial organization were performed by the reasonable methods with geometric system of Froebel Gifts. In the observation of our fundamental way of thinking on his architecture, this study shows the necessity to let us get out of preconceptions and conclusions that the organic architecture is mysterious and difficult, but to systematize and put his organic methods to practical use.

  • PDF

화염의 상호작용에 의한 부분 예혼합화염의 화염날림 유속 확대 (Nozzle Configurations for Partially Premixed Interacting Jet Flame to Enhance Blowout Limits)

  • 김진현;이병준
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.71-79
    • /
    • 2005
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of $40{\sim}72$ times the diameter of single jet, the flames are not extinguished even in 200m/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying S and ${\phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

선형혼합모형을 활용한 생물학적 동등성 분석 (Bio-Equivalence Analysis using Linear Mixed Model)

  • 안형미;이영조;유경상
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.289-294
    • /
    • 2015
  • 생동성 시험과 같은 임상약리학분야의 연구는 일반적으로 한 개체 내에서 반복하여 측정된 자료구조를 사용하므로 선형혼합모형을 이용하여 분석하는 것이 보편적이다. 이러한 모형에서 랜덤효과는 개체 내 관측 자료 사이의 상관관계를 설명하고, 공분산행렬은 개체-내 변동을 설명한다. 생동성 분석은 두 약물의 약동학적 변수인 Cmax와 AUC의 기하평균비에 대한 90% 신뢰구간이 동등성 한계인 [0.8, 1.25] 범위에 드는지 알아보는 분석으로, 고정효과에는 시기, 순서군, 치료효과를, 랜덤효과에는 개체효과를 가지는 선형혼합모형을 이용하여 분석한다. 이러한 분석이 적용된 실제 예를 살펴보기 위하여 레보플록사신 연구의 자료를 활용하였다.

중학교 학생의 증명 능력 분석 (Analysis on Students' Abilities of Proof in Middle School)

  • 서동엽
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제9권1호
    • /
    • pp.183-203
    • /
    • 1999
  • In this study, we analysed the constituents of proof and examined into the reasons why the students have trouble in learning the proof, and proposed directions for improving the teaming and teaching of proof. Through the reviews of the related literatures and the analyses of textbooks, the constituents of proof in the level of middle grades in our country are divided into two major categories 'Constituents related to the construction of reasoning' and 'Constituents related to the meaning of proof. 'The former includes the inference rules(simplification, conjunction, modus ponens, and hypothetical syllogism), symbolization, distinguishing between definition and property, use of the appropriate diagrams, application of the basic principles, variety and completeness in checking, reading and using the basic components of geometric figures to prove, translating symbols into literary compositions, disproof using counter example, and proof of equations. The latter includes the inferences, implication, separation of assumption and conclusion, distinguishing implication from equivalence, a theorem has no exceptions, necessity for proof of obvious propositions, and generality of proof. The results from three types of examinations; analysis of the textbooks, interview, writing test, are summarized as following. The hypothetical syllogism that builds the main structure of proofs is not taught in middle grades explicitly, so students have more difficulty in understanding other types of syllogisms than the AAA type of categorical syllogisms. Most of students do not distinguish definition from property well, so they find difficulty in symbolizing, separating assumption from conclusion, or use of the appropriate diagrams. The basic symbols and principles are taught in the first year of the middle school and students use them in proving theorems after about one year. That could be a cause that the students do not allow the exact names of the principles and can not apply correct principles. Textbooks do not describe clearly about counter example, but they contain some problems to solve only by using counter examples. Students have thought that one counter example is sufficient to disprove a false proposition, but in fact, they do not prefer to use it. Textbooks contain some problems to prove equations, A=B. Proving those equations, however, students do not perceive that writing equation A=B, the conclusion of the proof, in the first line and deforming the both sides of it are incorrect. Furthermore, students prefer it to developing A to B. Most of constituents related to the meaning of proof are mentioned very simply or never in textbooks, so many students do not know them. Especially, they accept the result of experiments or measurements as proof and prefer them to logical proof stated in textbooks.

  • PDF

개구부의 기하학적 형상이 구획실의 연료-공기 혼합특성 및 백드래프트 거동에 미치는 영향 (Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior)

  • 하수임;오창보
    • 한국화재소방학회논문지
    • /
    • 제33권1호
    • /
    • pp.30-38
    • /
    • 2019
  • 메탄 연료성분이 가득 찬 축소 구획실을 대상으로 개구부에서 유입된 공기와 내부 연료의 혼합특성과 백드래프트 발생특성을 규명하기 위해 대와동모사를 수행하였다. 통상의 문 형태(Door)와 가로 형태의 문이 벽면 상단($Slot_U$), 중단($Slot_M$) 및 하단($Slot_L$)에 있는 구획실의 4가지 개구부 조건들에 대해서 검토를 수행하였다. 점화원이 없을 경우 구획실 내부로 유입되는 산소의 양과 외부로 유출되는 연료의 양은 Door > $Slot_U$ ~ $Slot_M$ > $Slot_L$의 순서로 크지만 $Slot_U$의 경우가 구획실 내부에서 연료와 산소가 전체적으로 가장 잘 혼합되었고 $Slot_L$의 경우에는 연료와 산소가 층을 이루어 혼합이 가장 잘 이루어지지 않는 것으로 나타났다. 구획실 내 산소량과 연료량으로 정의되는 총괄당량비는 구획실에서 발생하는 백드래프트의 강도와 잘 연관되지 않음을 확인하였다. 백드래프트 발생 시의 구획실 내부의 최고 압력은 혼합이 가장 잘 이루어진 $Slot_U$가 가장 높게 나타났으며 $Slot_L$의 경우에는 압력상승이 낮아 백드래프트가 발생하지 않았다. 백드래프트 발생 시 Door와 $Slot_M$ 조건에서의 최고 압력값은 $Slot_U$ 다음 순서로 나타났으며, 각 조건들의 최고압력은 백드래프트 발생순간까지의 총 열발생량과 잘 연관되어 설명될 수 있었다.