• Title/Summary/Keyword: Geometric deviation

Search Result 154, Processing Time 0.027 seconds

A Comparison Study of Aerosol Samplers for PM10 Mass Concentration Measurement (PM10 질량농도 측정을 위한 시료채취기의 비교 연구)

  • Park, Ju-Myon;Koo, Ja-Kon;Jeong, Tae-Young;Kwon, Dong-Myung;Yoo, Jong-Ik;Seo, Yong-Chil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A PM10 (aerodynamic diameter${\leq}$10 ${\mu}m$) sampler is used to quantify the potential human exposure to suspended particulate matter (PM) and to comply with the governmental regulation. This study was conducted to compare and evaluate the same PM10 cutpoint and different slopes between United States Environmental Protection Agency (USEPA) PM10 sampling criterion and American Conference of Governmental Industrial Hygienists/$Comit\acute{e}$ $Europ\acute{e}en$ de Normalization/International Organization for Standardization thoracic PM10 sampling criterion through theory and experiment. Four PM10 samplers according to the USEPA criterion and one RespiCon sampler in accordance with the thoracic PM10 criterion were used in the present study. In addition, one DustTrak monitor was used to measure real time PM10 mass concentrations. All six aerosol samplers were tested in a PM generation chamber using polydisperse fly ash. Theoretical mass concentrations were calculated by applying the measured particle size distribution characteristics (geometric mean = 6.6 ${\mu}m$, geometric standard deviation = 1.9) of fly ash to each sampling criterion. The measured mass concentrations through a chamber experiment were consistent with theoretical mass concentrations in that a RespiCon sampler with the thoracic PM10 criterion collected less PM than a PM10 sampler with the USEPA criterion. The overall chamber experiment results indicated, when a PM10 sampler was used as a reference sampler, that (1) a RespiCon sampler had a normalizing factor of 1.6, meaning that this sampler underestimated an average 60% of PM10 mass sampled from a PM10 sampler, and (2) a DustTrak real-time monitor using a PM10 inlet had a calibration factor of 2.1.

Reproducibility of Applicator Position with High dose rate brachytherapy in uterine cervical cancer (자궁경부암 환자의 근접치료시 재현성 평가)

  • Kim Jong-Hwa;Son Jung-Hae;Jung Chil;Kim Mi-Hwa
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • I. Purpose Brachytherapy is the main component in treatment of patients with uterine cervical cancer. The reproducibility of applicator position in the same patient at repeated treatments was very important for accurate dose delivery. It was aimed to evaluate the change of applicator location between each high dose rate(HDR) brachytherapy insertion in the patients with uterine cervical cancer. II. Materials and Methods From January 1999 to October 2001, total 52 patients were treated with external beam radiotherapy and HDR brachytherapy (Microselectron, Nucletron). During six to seven times of brachytherapy, all patients had three treatment plans. From the orthogonal radiographs, we measured the following variables; height from upper border of pubic bone to os (HPO), distance from sacral promontory to tip of tandem (DST), distance from coccyx to os (DCO), distance from tip of right ovoid to os (DRO), distance from tip of left ovoid to os (DLO), and distance from center of the first tandem source to ovoid (DTO). To evaluate the reproducibility of applicator position, it was calculated the standard deviation of differences between three insertions for the 7 parameters in each patient. III. Results The ranges of standard deviations of interfractional differences for the variables were as follows. 1)HPO : $0{\sim}0.79cm$ 2)DST : $0{\sim}0.9cm$ 3)DCO : $0.06{\sim}0.76cm$ 4)DRO : $0{\sim}0.53cm$ 5)DLO : $0{\sim}0.45cm$ 6) DTO $0{\sim}0.36cm$ IV. Conclusions There was some change in applicator position on repeated implants in our study. But variation of the interfractional differences was minimal; in all parameters, there were less than 1 cm. We are continued to try for reducing the geometric variation between each procedure.

  • PDF

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Performance Characteristics of PM10 and PM2.5 Samplers with an Advanced Chamber System (챔버 기술 개발을 통한 PM10과 PM2.5 시료채취기의 수행 특성)

  • Kim, Do-Hyeon;Kim, Seon-Hong;Kim, Ji-Hoon;Cho, Seung-Yeon;Park, Ju-Myon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.739-746
    • /
    • 2010
  • The purposes of this study are 1) to develop an advanced chamber system within ${\pm}10%$ of air velocity at the particulate matter (PM) collection area, 2) to research theoretical characteristics of PM10 and PM2.5 samplers, 3) to assess the performance characteristics of PM10 and PM2.5 samplers through chamber experiments. The total six one-hour experiments were conducted using the cornstarch with an mass median aerodynamic diameter (MMAD) of $20\;{\mu}m$ and an geometric standard deviation of 2.0 at the two different air velocity conditions of 0.67 m/s and 2.15 m/s in the chamber. The aerosol samplers used in the present study are one APM PM10 and one PM2.5 samplers accordance with the US federal reference methods and specially designed three mini-volume aerosol samplers (two for PM10 and one for PM2.5). The overall results indicate that PM10 and PM2.5 mini-volume samplers need correction factors of 0.25 and 0.39 respectively when APM PM samplers considered as reference samplers and there is significant difference between two mini-volume aerosol samplers when a two-way analysis of variance is tested using the measured PM10 mass concentrations. The PM10 and PM2.5 samplers with the cutpoints and slopes (PM10: $10{\pm}0.5\;{\mu}m$ and $1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$ and $1.3{\pm}0.03$) theoretically collect the ranges of 86~114% and 64~152% considering the cornstarch characteristics used in this research. Furthermore, the calculated mass concentrations of PM samplers are higher than the ideal mass concentrations when the airborne MMADs for the cornstarch used are smaller than the cutpoints of PM samplers and the PM samplers collected less PM in another case. The chamber experiment also showed that PM10 and PM2.5 samplers had the bigger collection ranges of 37~158% and 55~149% than the theocratical calculated mass concentration ranges and the relatively similar mass concentration ranges were measured at the air velocity of 2.15 m/s comparing with the 0.67 m/s.