• Title/Summary/Keyword: Geometric calibration

Search Result 180, Processing Time 0.028 seconds

Measuring Automation System for Analysis of Dimensional Reationships On the Machine (상관관계 해석을 고려한 온 더 머신 자동측정 시스템)

  • 정성종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.183-187
    • /
    • 1996
  • On the machine measuring system composed of touch trigger probes, a DNC module, a CMM module, an analysis module and a man-machine interface unit was developed. Measuring accuracy is affected by working accuracy of the on the machine measuring system. The working accuracy of the system is due to geometric errors of th machine tool, servo errors of feed drives and positioning errors of probes. In order to compensate for the measuring errors due to the working accuracy, a calibration module was developed. The measuring automation system was realized with the on the machine measuring system and an IBM-PC on the machine center through a RS-232C. It turns the machining machine (CMM). The system is used for dimensional checking of machined components. initial job setup, part identification, identification of machining errors due to deflection and wear of tools. cutter run out, and calibration of machine tools. A horizontal machining center equipped with FANUC OMC wre used for verification of the system. The validity and reliability of the system. The validity and reliability of the system were confirmed through a series of experiments with gage blocks, ring gages, comparison measurement with a commercial CMM, and so on.

  • PDF

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.

A Study on the Compensation of the Difference of Driving Behavior between the Driving Vehicle and Driving Simulator (가상주행과 실차주행의 운전자 주행행태 차이에 관한 연구)

  • Park, Jinho;Lim, Joonbeom;Joo, Sungkab;Lee, Soobeom
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-122
    • /
    • 2015
  • PURPOSES : The use of virtual driving tests to determine actual road driving behavior is increasing. However, the results indicate a gap between real and virtual driving under same road conditions road based on ergonomic factors, such as anxiety and speed. In the future, the use of virtual driving tests is expected to increase. For this reason, the purpose of this study is to analyze the gap between real and virtual driving on same road conditions and to use a calibration formula to allow for higher reliability of virtual driving tests. METHODS : An intelligent driving recorder was used to capture real driving. A driving simulator was used to record virtual driving. Additionally, a virtual driving map was made with the UC-Win/Road software. We gathered data including geometric structure information, driving information, driver information, and road operation information for real driving and virtual driving on the same road conditions. In this study we investigated a range of gaps, driving speeds, and lateral positions, and introduced a calibration formula to the virtual record to achieve the same record as the real driving situation by applying the effects of the main causes of discrepancy between the two (driving speed and lateral position) using a linear regression model. RESULTS: In the virtual driving test, driving speed and lateral position were determined to be higher and bigger than in the real Driving test, respectively. Additionally, the virtual driving test reduces the concentration, anxiety, and reality when compared to the real driving test. The formula includes four variables to produce the calibration: tangent driving speed, curve driving speed, tangent lateral position, and curve lateral position. However, the tangent lateral position was excluded because it was not statistically significant. CONCLUSIONS: The results of analyzing the formula from MPB (mean prediction bias), MAD (mean absolute deviation) is after applying the formula to the virtual driving test, similar to the real driving test so that the formula works. Because this study was conducted on a national, two-way road, the road speed limit was 80 km/h, and the lane width was 3.0-3.5 m. It works in the same condition road restrictively.

3D Reconstruction using a Moving Planar Mirror (움직이는 평면거울을 이용한 3차원 물체 복원)

  • 장경호;이동훈;정순기
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1543-1550
    • /
    • 2004
  • Modeling from images is a cost-effective means of obtaining 3D geometric models. These models can be effectively constructed from classical Structure from Motion algorithm. However, it's too difficult to reconstruct whole scenes using SFM method since general sites contain a very complex shapes and brilliant colours. To overcome this difficulty, the current paper proposes a new reconstruction method based on a moving Planar mirror. We devise the mirror posture instead of scene itself as a cue for reconstructing the geometry That implies that the geometric cues are inserted into the scene by compulsion. With this method, we can obtain the geometric details regardless of the scene complexity. For this purpose, we first capture image sequences through the moving mirror containing the interested scene, and then calibrate the camera through the mirror's posture. Since the calibration results are still inaccurate due to the detection error, the camera pose is revised using frame-correspondence of the comer points that are easily obtained using the initial camera posture. Finally, 3D information is computed from a set of calibrated image sequences. We validate our approach with a set of experiments on some complex objects.

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

Geometric Calibration and Accuracy Evaluation of Smartphone Camera (스마트폰 카메라의 기하학적 검정과 정확도 평가)

  • Kim, Jin-Soo;Jin, Cheong-Gil;Lee, Seong-Kyu;Lee, Sun-Gu;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2011
  • The smartphones which have been recently are embedded with high resolution quality camera, assisted GPS, accelerometer, gyroscope and various sensors including magnetometer sensor that could be directly used for measurement. This study aims to suggest the possible application of smartphone camera providing high resolution images in terms of photogrammetry by calibrating it and assessing its accuracy. First of all, prior to the accuracy assessment of smartphone camera, camera calibration was conducted to correct lens distortion of each camera and the accuracy of image coordinates and object coordinates calculated by bundle adjustment during this procedure was analyzed. Also regarding three-dimensional positioning, result analysis depending on considering lens distortion coefficients was conducted, and finally relative accuracy of smartphone camera on metric camera was assessed. The result showed that in terms of distortion correction of smartphone camera, also higher order symmetric radial lens distortion coefficients should be considered, and three dimensional position determined by smartphone images was a little difference from that by metric camera. Therefore it is expected that smartphone images have huge possibility to be used for photogrammetry.

Fisheye Image Correction with Ellipsoid Model (타원체 모형을 통한 어안 영상 보정)

  • Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • General method for correcting the distortion caused by the characteristic of the fish-eye lens may be classified in two ways. The first method is a calibration method using a mathematical model taking into account the characteristics of the lens, the second method is a method using only the distortion correction image, regardless of the lens. When considering the characteristics of the lens, calibration equation can be calculated geometrically from the relationship between the three-dimensional real-world coordinates and two-dimensional image coordinates and the parameters of lens. However, it is not suitable for ellipsoid type lens, because of existing research papers have been corrected on the spherical-type fisheye lens. In this paper, we propose a method for correcting geometrically using fish-eye lens as an ellipsoid model. Through a calibration picture, it can be seen that the proposed method is valid.

A Study on Production and Its Usefulness of AAPM TG18 Guiding Instrument for Diagnostic Monitor QC (영상의학 검사 판독용 모니터 정도관리 Guiding Instrument 제작과 유용성 고찰)

  • Son, Gi-Gyeong;Sung, Dong-Wook;Jeong, Jae-Ho;Kang, Hui-Doo;Ryu, Kyung-Nam
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Diagnostic display monitor QA according to AAPM TG18 is usually performed by PACS administrator, product manager and reading doctor, and for acceptance testing and periodic quality control evaluation, a combination of visual and quantitative tests can be used, as outlined in sections 5 and 6 of 'assessment of display performance for medical imaging systems'. Although many display tests can be performed visually, a more objective and quantitative evaluation of display performance requires special test tools. The required instruments vary in their complexity and cost, depending on the context of the evaluation(research, acceptance testing, or quality control) and how thorough the evaluation needs to be. Objective and reliable assessment of many display characteristics can be performed with relatively inexpensive equipment, So, we made 'AAPM TG18 guiding instrument' to ues variable purpose of the evaluation of 'geometrical distortions(quantitative"', 'veiling glare(visual)' and 'sensor calibration'. The spatial measurements for the quantitative evaluation of geometric distortions, and the measurement of the veling-glare ring response function which provides information regarding the spatial extent of the luminance spread, can be performed using the TG18 guiding instrument can be used to sensor calibration to standardize the basic rate of 0% luminance when periodic calibration.

  • PDF

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF

An Analytic Solution to Projector Pose Estimation Problem

  • Lee, Joo-Haeng
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.978-981
    • /
    • 2012
  • We present an analytic solution to the projector pose estimation problem for the pinhole projection model in which the source image is a centered rectangle with an unknown aspect ratio. From a single quadrilateral given as a target image, our solution gives the position and orientation of a projector as well as the aspect ratio of a source image. The proposed method decomposes the problem into two pose estimation problems of coupled line projectors aligned at each diagonal of the given quadrilateral and then computes the common solution that satisfies the relevant geometric constraints. The solution is formulated as simple analytic equations. We also provide a determinant of projectability of an arbitrary quadrilateral.