• Title/Summary/Keyword: Geometric approach

Search Result 715, Processing Time 0.026 seconds

Notional-Load Plastic-Hinge Method for Steel Structure Design (강구조 설계를 위한 가상하중 소성활절 해석)

  • 김승억;윤영묵
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.103-113
    • /
    • 1996
  • This paper presents practical notional-load plastic-hinge method for a two-dimensional steel structure design. The proposed method incorporates the refined plastic-hinge concept for spread of plasticity together with a practical notional-load approach. The proposed method can assess realistically both strength and behavior of a structural system and its individual members in a direct manner. As a result, the method can be used for design without tedious separate member capacity checks, including the calculation of K-factor. The strengths predicted by the proposed method are then compared with those predicted by the exact plastic-zone analysis as well as by the conventional LRFD procedure. A good agreement is generally observed. The displacement predictions are compared with the plastic-zone solutions. Analysis and design guidelines in using the proporsed method are given in detail. Analysis and design procedures are recommended. Member sizes determined by the proposed method are compared with those determined by the LRFD method. It is concluded that the procedures are suitable for adoption in practice.

  • PDF

Isogeometric Topological Shape Optimization of Structures using Heaviside Enrichment (헤비사이드 강화를 이용한 구조물의 아이소-지오메트릭 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2013
  • An isogeometric topological shape optimization method is developed using the level sets and Heaviside enrichments. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set functions, which facilitates to handle complicated topological shape changes. The Heaviside enrichment improves the isogeometric analysis by adding some enrichment functions to model the internal boundaries. The proposed topological shape optimization method has several benefits: exact geometric models can be obtained using the isogeometric approach and the limitation of tensor-product patches can be overcome using the Heaviside enrichments to represent the internal voids. Even in a single patch, discontinuous displacement fields as well as smooth stress field can be obtained. Since the level sets offer the implicit moving boundary inside the domain, it is easy to represent the topological shape variations in the isogeometric analysis using Heaviside enrichments.

Image Contrast Enhancement using Adaptive Unsharp Mask and Directional Information (방향성 정보와 적응적 언샾 마스크를 이용한 영상의 화질 개선)

  • Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.27-34
    • /
    • 2011
  • In this paper, the novel approach for image contrast enhancement is introduced. The method is based on the unsharp mask and directional information of images. Since the unsharp mask techniques give better visual quality than the conventional sharpening mask, there are much works on image enhancement using unsharp masks. The proposed algorithm decomposes the image to several blocks and extracts directional information using DCT. From the geometric properties of the block, each block is labeled as appropriate type and processed by adaptive unsharp mask. The masking process is skipped at the flat area to reduce the noise artifact, but at the texture and edge area, the adaptive unsharp mask is applied to enhance the image contrast based on the edge direction. Experiments show that the proposed algorithm produces the contrast enhanced images with superior visual quality, suppressing the noise effects and enhancing edge at the same time.

Plan Composition Expressed in the Architecture of Art Gallery Designed by Louis I. Kahn - Focus on the Yale University Art Gallery Extension - (Louis I. Kahn의 미술관 건축에 나타난 평면구성에 관한 연구 - Yale University Art Gallery Extension을 중심으로 -)

  • Kim, Hong-Bae
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.128-135
    • /
    • 2012
  • The purpose of this study is to investigate and analyze the compositional elements of plan of art museums by selecting architectural works, which have strong symbolic meaning when evaluating value, from architectural works by Louis Kahn. First, the centrality of artworks, which are being displayed at the Yale Art Gallery, is complex. It includes three patterns of Void (spatial) Centrality+Symbolic Centrality+Functional Centrality among the five patterns suggested in this study. Second, the ratio system of interior space, which is expressed in the extension of the Yale Art Gallery, can be classified into the floor and walls. The floor used the square 1:1 ratio system. The ceiling used the grid patterns of equilateral triangles (regular tetrahedrons). It was applying a geometric ratio system when creating forms by using one side as a beam and the other sides as decorations of the ceiling. Third, the contours of interior space, which were expressed in Kahn's works, used the method of forming separate space according to the contouring rule (structural unit) defined by columns, and they were used in constructing the entire space through the integration of separate spaces. Fourth, according to the characteristics that were expressed by artworks displayed within the Yale Art Gallery Extension, the concept of accessibility was not as clear as that of residential buildings, because an approach of respecting existing architecture and context was used, rather than the starting point of interior space, or differentiated circulation, which has the function of a determined position.

  • PDF

An Investigation on $6^{th}$ Grade Students' Spatial Sense and Spatial Reasoning (초등학교 6학년 학생들의 공간감각과 공간추론능력 실태조사)

  • Kim, Yu-Kyung;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.9 no.3
    • /
    • pp.353-373
    • /
    • 2007
  • The purpose of this study was to provide instructional suggestions by investigating the spatial sense and spatial reasoning ability of 6th grade students. The questionnaire consisted of 20 questions, 10 for spatial visualization and 10 for spatial orientation. The number of subjects for the survey was 145. The processes through which the students solved the problems were the basis for the assessment of their spatial reasoning. The result of the survey is as follows: First, students performed better in spatial visualization than in spatial orientation. With regard to spatial visualization, they were better in transformation than in rotation. With regard to spatial orientation, students performed better in orientation sense and structure cognitive ability than in situational sense. Second, the students that weren't excellent in spatial visualization tended to answer the familiar figures without using mental images. The students who lacked spatial orientation experienced difficulties finding figures observed from the sides. Third, students had high frequency rate on the cognition and use of transformation, the development and application of visualization methods and the use of analysis and synthesis. However they had a lower rate on a systematic approach and deductive reasoning. Further detailed investigation into how students use spatial reasoning, and apply it to actual teaching practice as a device for advancing their geometric thinking is necessary.

  • PDF

Mosaic Detection Based on Edge Projection in Digital Video (비디오 데이터에서 에지 프로젝션 기반의 모자이크 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2016
  • In general, mosaic blocks are used to hide some specified areas, such as human faces and disgusting objects, in an input image when images are uploaded on a web-site or blog. This paper proposes a new algorithm for robustly detecting grid mosaic areas in an image based on the edge projection. The proposed algorithm first extracts the Canny edges from an input image. The algorithm then detects the candidate mosaic blocks based on horizontal and vertical edge projection. Subsequently, the algorithm obtains real mosaic areas from the candidate areas by eliminating the non-mosaic candidate regions through geometric features, such as size and compactness. The experimental results showed that the suggested algorithm detects mosaic areas in images more accurately than other existing methods. The suggested mosaic detection approach is expected to be utilized usefully in a variety of multimedia-related real application areas.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Comparative study of Ecological Risk Assessment : Deriving Soil Ecological Criteria (토양생태계 위해성평가기법 비교연구: 토양생태준거치 산정을 중심으로)

  • Lee, Woo-Mi;Kim, Shin Woong;Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The purpose of ecological risk assessment in soil ecosystem is to protect ecological receptors and to provide a scheme of efficient management for soil contaminants. Developed countries have already prepared the methodologies of ecological risk assessment by considering their soil properties, land use, and ecological receptors. In this study, we compared the soil ecological risk assessment processes in the similarity and differences in methodology. Four countries, except for USA, adjusted the toxicological data for ecological risk assessment, based on their representative soil properties because the soil properties affect toxic effects to ecological receptors. The soil ecological risk assessment methodology of Netherlands and UK was based on 'Technical guidance document on risk assessment (TGD)' of European Chemical Bureau (ECB). Australia, USA, and Canada developed their autonomous methodology. In the Netherlands, UK, Australia, and Canada, they employed the species sensitivity distribution (SSD) approach if sufficient toxicity data are available. The USA determined the ecological soil screening level by obtaining the geometric mean of toxicological data for three species. Furthermore, all countries consider secondary poisoning in their soil ecological risk assessment. The latest risk assessment methodology of soil ecosystem that this study investigated can be used to explore what Korea needs to develop the Korean ecological risk assessment methodology of soil ecosystem in the future.

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

3D Object Recognition Using Appearance Model Space of Feature Point (특징점 Appearance Model Space를 이용한 3차원 물체 인식)

  • Joo, Seong Moon;Lee, Chil Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • 3D object recognition using only 2D images is a difficult work because each images are generated different to according to the view direction of cameras. Because SIFT algorithm defines the local features of the projected images, recognition result is particularly limited in case of input images with strong perspective transformation. In this paper, we propose the object recognition method that improves SIFT algorithm by using several sequential images captured from rotating 3D object around a rotation axis. We use the geometric relationship between adjacent images and merge several images into a generated feature space during recognizing object. To clarify effectiveness of the proposed algorithm, we keep constantly the camera position and illumination conditions. This method can recognize the appearance of 3D objects that previous approach can not recognize with usually SIFT algorithm.