• 제목/요약/키워드: Geometric approach

검색결과 719건 처리시간 0.026초

산업용방사선영상의 비선형모델링에 의한 영상복구 (Image Recovery Using Nonlinear Modeling of Industrial Radiography)

  • 황중원;황재호
    • 대한전자공학회논문지SP
    • /
    • 제45권4호
    • /
    • pp.71-77
    • /
    • 2008
  • 이 논문은 산업용 방사선영상을 비선형왜곡의 영향으로부터 복구하는 방법을 제시한다. 비선형 형태의 모델을 구현하기 위해 역자승법칙과 비어의 법칙에 근거한 해석적 방법을 고안한다. 방사선 선원과의 위치설정에 따른 다양성에 기인한 기하학적 영향이 디지털화된 영상에 반영된다. 각도, 위치, 흡수상수, 길이, 너비 및 화소수 산출 등과 같은 파라미터 값으로 표현하는 모델관련 특성을 샘플영상과 일치하도록 모델 내에 수식적으로 규정하였다. 모델과 최근접한 영상으로의 복구를 위한 탄젠트 기울기 기반 보정기법을 고안하였다. 이 방식을 강판튜브 방사선영상에 적용하여 영상을 복구한 결과가 제시되고 논의된다.

다구찌법을 이용한 WBK(Wire-woven Bulk Kagome)의 최적설계 (Optimal design of an Wire-woven Bulk Kagome using taguchi method)

  • 최지은;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.13-19
    • /
    • 2008
  • A Wire-woven Bulk Kagome (WBK) is the new truss type cellular metal fabricated by assembling the helical wires in six directions. The WBK seems to be promising with respect to morphology, fabrication cost, and raw materials. In this paper, first, the geometric and material properties are defined as the main design parameters of the WBK considering the fact that the failure of WBK is caused by buckling of truss elements. Taguchi approach was used as statistical design of experiment(DOE) technique for optimizing the design parameters in terms of maximizing the compressive strength. Normalized specific strength is constant regardless of slenderness ratio even if material properties changed, while it increases gradually as the strainhardening coefficient decreases. Compressive strength of WBK dominantly depends on the slenderness ratio rather than one of the wire diameter, the strut length. Specifically the failure of WBK under compression by elastic buckling of struts mainly depended on the slenderness ratio and elastic modulus. However the failure of WBK by plastic failed marginally depended on the slenderness ratio, yield stress, hardening and filler metal area.

  • PDF

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

CLS 시편의 탄성일인자 유도 및 이를 적용한 열가소성 Graphite/Peek 복합재의 파괴인성 $G_c$ 측정 (Elastic Work Factor of CLS Specimen and Determination of $G_c$ for Graphite/Peek Composites by Using the Elastic Work Factor)

  • 이경엽
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2792-2799
    • /
    • 1996
  • It was shown in the previous study that the numerically derived elastic work factor for CLS specimen was independent of fiber direction for a unidirectional case. Also, it was proposed the elastic work factor could be used to determine energy release rate from a single test record. In the present study, elastic work factor was derived from a simple beam theory to investigate its dependence on material property and geometric condition. Also, the elastic work factor of CLS specimen was applied experimentally to determine critical energy release rate in order to prove its validity determining critical energy release rate from a single specimen. For this purpose, critical energy release rate determined using the elastic work factor was compared with that determined by the compliance method. The results showed that while elastic work factor is affected by $t_2/t_1$ and $L_2/L_1$ it is independent of fiber angle for a unidirectional case. It was also found that critical energy release rates determined by both methods are comparable each other, thus elastic work factor approach can be used to determine energy release rate from a single test specimen.

기학학적 비선형을 고려한 Zetlin형 케이블 돔 구조물의 장력제어 기법에 관한 연구 (A Study on the Stress Control Technique of Zetlin-Typed Cable Dome Structures Considering Geometrical Nonlinearity)

  • 정을석;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.116-124
    • /
    • 2005
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석 (Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses)

  • 정강;김영완
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

LAG TIME RELATIONS TO CATCHMENT SHAPE DESCRIPTORS AND HYDROLOGICAL RESPONSE

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Water Engineering Research
    • /
    • 제6권2호
    • /
    • pp.91-99
    • /
    • 2005
  • One of the most important factors for estimating a flood runoff from streams is the lag time. It is well known that the lag time is affected by the morphometric properties of basin which can be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) was applied for calculating the lag time of geomorphologic instantaneous unit hydrograph(GIUH) at a basin outlet. The lag time was obtained from the observed data of rainfall and runoff by using the method of moments and the procedure based on geomorphology was used for GIUH. The relationships between the basin morphometric properties and the hydrological response were discussed based on application to 3 catchments in Korea. Additionally, the shapes of equivalent ellipse were examined how they are transformed from upstream area to downstream one. As a result, the relationship between the lag time and descriptors was shown to be close, and the shape of ellipse was presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

  • PDF

축방향 관통균열이 존재하는 곡관의 한계 하중 및 공학적 J-적분 예측 (Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend)

  • 송태광;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.562-569
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J estimates for axial through-wall cracked pipe bends under internal pressure and in-plane bending. Geometric variables associated with a crack and pipe bend are systematically varied, and three possible crack locations (intrados, extrados and crown) in pipe bends are considered. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, effect of bend and crack geometries on plastic limit loads for axial through-wall cracked pipe bends under internal pressure and in-plane bending are quantified, and closed-form limit solutions are given. Based on proposed limit load solutions, a J estimation scheme for axial through-wall cracked pipe bends under internal pressure and in-plane bending is proposed based on reference stress approach.

국내 로터리의 연령대별 사고모형 (Accident Models of Rotary by Age Group in Korea)

  • 박민규;박병호
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.121-129
    • /
    • 2013
  • PURPOSES : This study deals with the traffic accidents of rotary in Korea. The objective of this study is to develop the accident models by age group based on the various data of rotaries. METHODS : In pursuing the above, this study gives particular attentions to classifying the accident data of 17 rotaries by age, collecting the data of geometric structure, traffic volume and others, and developing the models using SPSS 17.0 and EXCEL. RESULTS : First, 3 multiple linear regression models which were all statistically significant were developed. The value of model of under 30-49 age group were, however, evaluated to be 0.688 and be less than those of other models. Second, the most powerful variables were analyzed to be traffic volume in the model of under 30 age group, circulatory roadway width in the model of 30-49 age group, and the number of approach lane in the model of above 50 age group. Finally, the test results of accident models using RMSE were all evaluated to be fitted to the given data. CONCLUSIONS : This study propose install streetlights, speed humps and widen Circulatory as effective improvements for reduction of accident in rotary.