• 제목/요약/키워드: Geometric and Positioning Accuracy

검색결과 61건 처리시간 0.023초

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

Base Station Placement for Wireless Sensor Network Positioning System via Lexicographical Stratified Programming

  • Yan, Jun;Yu, Kegen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4453-4468
    • /
    • 2015
  • This paper investigates optimization-based base station (BS) placement. An optimization model is defined and the BS placement problem is transformed to a lexicographical stratified programming (LSP) model for a given trajectory, according to different accuracy requirements. The feasible region for BS deployment is obtained from the positioning system requirement, which is also solved with signal coverage problem in BS placement. The LSP mathematical model is formulated with the average geometric dilution of precision (GDOP) as the criterion. To achieve an optimization solution, a tolerant factor based complete stratified series approach and grid searching method are utilized to obtain the possible optimal BS placement. Because of the LSP model utilization, the proposed algorithm has wider application scenarios with different accuracy requirements over different trajectory segments. Simulation results demonstrate that the proposed algorithm has better BS placement result than existing approaches for a given trajectory.

High Accurate and Efficient Positioning in Urban Areas Using GPS and Pseudolites Integration

  • SUH, Yong-Cheol;SHIBASAKI, Ryosuke
    • Korean Journal of Geomatics
    • /
    • 제2권1호
    • /
    • pp.17-24
    • /
    • 2002
  • The Global Positioning System technology has been widely used in positioning and attitude determination. It is well known that the accuracy, availability and reliability of the positioning results are heavily dependent on the number and geometric distribution of tracked GPS satellites. Because of this limitation, in some situations, such as in urban canyons, underground or inside of buildings, it is difficult to navigate with GPS receiver. Therefore, in order to improve the performance of satellite-based positioning, the integration of GPS with the pseudolite technology has been proposed. With this pseudolite technology, it is expected that seamless positioning service can be provided in a wider area without replacing existing GPS receivers. On the other hand, to adopt pseudolites on a larger scale, it is necessary to verify how the pseudolites may complement the existing GPS-based positioning. In this paper the authors present the details of the experiments and the results of the fundamental verification for seamless positioning using integration of GPS and pseudolite. This paper shows that the accuracy and efficiency of integrating GPS and pseudolite through the dynamic and static positioning experiment. The influence of pseudolite signal on GPS receiver is also discussed. The experimental results indicate that the accuracy of the height component can indeed be significantly improved, to approximately the same level as the horizontal component.

  • PDF

INTEGRATION OF GPS AND PSEUDOLITE FOR SEAMLESS POSITIONING : Fundamental Verification Experiment and Results

  • Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2002년도 창립 20주년기념 국제학술대회
    • /
    • pp.77-84
    • /
    • 2002
  • The Global Positioning System, GPS technology has been widely used in positioning and attitude determination. It is well known that the accuracy, availability and reliability of the positioning results are heavily dependent on the number and geometric distribution of tracked GPS satellites. Because of this limitation, in some situations, such as in urban canyons, underground space or inside of buildings, it is really hard to navigate with GPS receiver. Therefore, in order to improve the performance of satellite-based positioning, the integration of GPS with the pseudolite technology has been proposed. With this pseudolite technology, it is expected that seamless positioning service can be provided in wider area without replacing existing GPS receivers. On the other hand, to adopt pseudolites at larger scale, it is necessary to verify how the pseudolites can complement the existing GPS-based positioning. In this paper the authors present the detail of experimental investigations and the results of the fundamental verification for seamless positioning using integration of GPS and pseudolite. This paper shows that the accuracy and efficiency of integrating GPS and pseudolite through the dynamic and static positioning experiment and discuss about the influence on GPS receiver by pseudolite signal. The experimental results indicate that the accuracy of the height component can indeed be significantly improved, to approximately the same level as the horizontal component.

  • PDF

단속에 따른 Greep Feed 연삭가공 특성 (Characteristics of creep grinding in slotted wheel)

  • 이상철;박정우;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.905-909
    • /
    • 1997
  • A geometric error of machine parts is one of the most important factors that affect the accuracy of positioning, generating and measuring for precision machinery. It is known that the thermal deformation of a workpiece during surface grinding is the most important in the geometric error of ground surface. This paper experimentally describes the grinding characteristics of creep-feed grinding. The wheels have 6 slotted pieces in order to compare the grinding temperature with the geometric.

  • PDF

줌렌즈 CCD 카메라의 기하학적 검정 정확도 평가 (Evaluation for Geometric Calibration Accuracy of Zoom-lens CCD Camera)

  • 유환희;정상용;김성삼
    • 한국측량학회지
    • /
    • 제21권3호
    • /
    • pp.245-254
    • /
    • 2003
  • 줌 렌즈 CCD 카메라는 사용상 많은 장점을 갖고 있으나 기하학적으로 불안정하여 카메라 검정이 어려운 문제점을 가지고 있으며 이것은 일반적으로 알려진 것과 같이 줌 카메라의 변수가 줌 위치에 따라 변화하기 때문이다. 본 연구에서는 줌 렌즈 CCD카메라의 변수계산과 3차원 위치정확도를 평가하기 위하여 Abdel-Aziz와 Karara가 제안한 DLT기법과 Tsai 기법을 비교분석하였다. 그 결과, 기준점을 대상물이 위치한 공간에 함께 배치할 경우에 Tsai와 DLT모델식에 의한 3차원 위치정확도는 두 방법 모두 비슷하였으나, 기준점과 대상물이 이격되는 경우 DLT에 비해 Tsai가 더 안정적임을 알 수 있었다. 따라서, 그 동안 많이 사용해 온 DLT기법의 변수 최적화를 위한 추가적인 연구가 3차원 위치 정확도 향상을 위해 필요하다고 판단된다.

형상 재 설계에 의한 공작기계 기하오차 보정 (Geometric error compensation of machine tools by geometry redesign)

  • 서성교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

A Study on the GCP Disposition of KOMPSAT-1

  • Seo, Dong-Ju;Jang, Ho-Sik;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • 제1권1호
    • /
    • pp.27-33
    • /
    • 2001
  • There are invisible wars going on to preoccupy required satellite information for national defense, industry and living in the out space. Therefore, Korea has developed and successfully launched KOMPSAT (Korea Multi-Purpose SATellite), Korea's first multi-pur pose applications satellite, on December 21, 1999. In the course of geometric corrections with KOMPSAT-1 images, an accuracy of GCP collections is analyzed by the coordinated of digital map respective and an accuracy according to the GCP disposition was analyzed as well. For disposition of GCP, it turned out that even distribution on the whole screen contributes to promote accuracy. These are expected to used as basic data in putting the KOMPSAT-1 geometric correction into practical use.

  • PDF

전처리 수준에 따른 SPOT 위성사진의 정확도 분석에 관한 연구 (A Study on the Analysis of Accuracy of SPOT Photos According to the Preprocessing Level)

  • 유복모;이현직
    • 한국측량학회지
    • /
    • 제9권1호
    • /
    • pp.83-96
    • /
    • 1991
  • 본 연구는 최근 소축척 및 중축척지도 제작과 database 구축등의 활용분야에 효용성이 확대되고 있는 SPOT 위성영상의 3차원 위치결정에 대한 연구로서, 사진필름형태의 SPOT 위성영상에 대해 전처리 수준(level 1AP, 1B)에 따른 기하학적 특성과 정확도에 대해 분석하였다. 본 연구 결과, 전처리 수준에 따른 SPOT위성사진의 기하학적 특성과 각 전처리 수준의 외부표정요소에 대한 최적 다항식 형태 및 유의한 부가매개변수를 결정할 수 있었으며, level 1AP가 level 1B에 비해 기하학적 정밀도와 정화도가 양호하여 정밀한 3차원 위치결정과 지도제작에 적합함을 알 수 있었다.

  • PDF

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.