• Title/Summary/Keyword: Geometric Structure

Search Result 997, Processing Time 0.03 seconds

An Anthropometric Product Design Approach Using Design Structure Matrix (DSM): Application to Computer Workstation Design (Design Structure Matrix를 활용한 인체측정학적 제품설계 방법: 컴퓨터 워크스테이션 설계 적용)

  • Jung, Ki-Hyo;Kwon, O-Chae;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.111-115
    • /
    • 2007
  • Design equations for anthropometric product design are developed by considering the geometrical relationships of design dimensions and anthropometric dimensions. The present study applied the design structure matrix (DSM) method to the development of design equations for a computer workstation, and compared design values from the design equations with corresponding design values of ergonomic recommendations and existing products. The relationships between design dimensions (e.g., legroom and worktable) were analyzed by a DSM, and then the application order of design equations (e.g., seatpan, backrest, armrest, legroom, and worktable in descending order) was determined. Next, design equations were developed by analyzing the geometric relationships between computer workstation design dimensions and anthropometric dimensions. Finally, design values for a computer workstation were determined by considering a standard posture defined and representative human models (5th, 50th, 95th %ile). The design values calculated using the design equations were similar with those of ergonomic recommendations found in literature and two commercial products measured in the study; however, some design values (e.g., seatpan height) were different due to discrepancy in standard posture. The DSM method would be utilized to systematically analyze the relationships between design dimensions for anthropometric product design.

A Study on the Automatic Mesh Generation of the Two Dimensional Structure using Object Oriented Modeling Concept (객체 지향 모델링 개념을 이용한 이차원 구조물의 유한요소 자동 생성에 관한 연구)

  • 장창두;심우승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.70-77
    • /
    • 1996
  • Recently many efforts have been made to improve the efficiency of design and production of the structures using the automation system. But, this work has been progressed as independent or partial system. And, the study on the integrated system is not sufficient in application for practical problems yet. This paper deals with the fundamental concept of modeling system and application method on structural modeling. At first, the core of the integrated system is a shape modeling system that can represent the geometric and topological information. This system must be designed as an open system to be combined with each independent automation system. The appropriate concept to realize this system on structural modeling is object oriented modeling and this enables to integrate each automation system successfully, This concept was applied to automatic mesh generation. For shape modeling system, half-edge data structure that is being used in solid modeling was modified to handle the plate structure in the plane. And, to generate the triangular meshes, direct node connection method was used. And, as a result, the integrated system that generate the meshes of two dimensional structure automatically was realized. And, programmed by C++, these systems can be combined with other systems easily and have good reusability.

  • PDF

A Study on Traditional Korean Furniture, PyeongSang I (한국 전통목가구 평상(平床) 연구 I)

  • Kim, Min keung;Moon, Sun Ok
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.2
    • /
    • pp.126-134
    • /
    • 2017
  • This study explores PyeongSang, a piece of traditional Korean furniture, in order to make people know the details about what the piece is in the first paper. And based on the paper, PyeongSang will be developed as moulded multi-useful beds and sofas adapting the joint and ornament from the structure and pattern of the piece in the next paper. As the result, it appeared as two styles such as bed types mentioned as SalPyeongSang and ttulmaru in Korean. The pieces have been used from the three Kingdoms period in Korean history. The styles appeared as the structure of four parts with the lower fences called as nangan, the seats jointed by thin wood pieces, the wind hole, and the legs of foot types. The parts were beautifully carved with the ornament such as lattice patterns like geokjamun and manjamun, flower patterns like dangchomun, elephant eyes patterns like ansangmun from the Korean tradition. And the legs showed various shapes such as supports transformed from horse foots, tiger legs and bamboo, and board types carved with elephant eyes and geometric patterns. Hence, in the next paper based on this paper, PyeongSang will be developed as moulded multi-useful beds and sofas adapting the joints and ornaments from the structure and patterns of the piece.

An Analysis on Seoullo 7017 in Terms of Spatial Configuration and Pedestrian Movement in Comparison with the High-line Project

  • Choi, Junho;Choi, Jaepil
    • Architectural research
    • /
    • v.21 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Inspired by the success of the High-line project in New York, The Seoul Metropolitan Government launched a project to convert an overpass near Seoul station into a pedestrian park. Seoullo 7017 went through instant success after its opening in May 2017; however, there is a continuous controversy over its long-term impact as shown in the exemplary cases like the High-line project. This study aims for quantitative investigation through the comparative analysis between Seoullo 7017 and the High-Line in the perspectives of spatial configuration. Space Syntax was chosen as the analysis method for this research. Integration (3) in Space Syntax is known to have a high correlation with pedestrian volume; thus, by using this method, spatial structure was analyzed by comparing the statistically verified results of changes in the spatial structure of the Highline with those in Seoul. The results indicated that the influence of Seoullo 7017 was less than that of the High-line in terms of spatial configuration. The reason for this difference is spatial configuration between Manhattan and Seoul. The High-line is located in Manhattan which has an urban grid structure, whereas Seoul has non-geometric urban structure, the neighborhood unit in Korea. Also the center of the overpass isn't connected well with its surroundings.

A Method of Reusing Kinematic Information for Virtual Facilities (동작 정보를 갖는 가상설비 데이터 재활용 방법론)

  • Ko, Min-Suk;Shin, Hye-Seon;Wang, Gi-Nam;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • This paper proposes a method for reusing kinematic design data for virtual facilities, Making a virtual model of a facility involves two major activities: geometric design (virtual model visualization) and kinematic design that should be remodeled frequently whenever design changes occur, Conventionally, a virtual model of an automated facility focuses on the design level, which mainly deals with design verification, alternative comparison, and geometric model diagnosis, Although a design level model can be designed with the information of past models from PLM system, a simulation level model is not sufficient utilized to be reused for kinematic design purpose, We propose a method for reusing kinematic information of a past simulation model to cope with this problem, We use the concept or the 'center of mass', which is a point representing the mean position of the matter in a body or system. And we also use comparison method of a boundary box to identity which 3D objects have to be involved from the design model to a link structure that is contained in the simulation model. Because a proposed method only use not a historical approach but a geometrical approach, it is more effective to apply to the field.

Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code

  • Habibi, Alireza;Izadpanah, Mehdi;Rohani, Sina
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • Geometric nonlinearity can significantly affect load-carrying capacity of slender columns. Dependence of structural stability on columns necessitates the consideration of second-order effects in the design process of columns, appropriately. On the whole, the design codes present a simplified procedure for second order analysis of slender columns. In this approximate method, the end moments of columns resulted from linear analysis (first-order) are multiplied by the recommended moment amplification factors of codes to achieve magnified moments of the second-order analysis. In the other approach, the equilibrium equations are directly solved for the deformed configuration of structure, so the resulting moments and deflections contain the influence of slenderness and increase more rapidly than do loads. The aim of this study is to evaluate the accuracy of moment amplification factors of Iranian national building code whose provisions are similar to the ACI requirement. Herein, finite element method is used to achieve magnified end moments of reinforced concrete moment resisting frames, and the outcomes are compared with the moments acquired based on the proposed approximate method by Iranian national building code. The results show that the approximate method of Iranian code for calculating magnified moments has significant errors for both unbraced and braced columns.

A Study on Students' Responses to Non-routine Problems Using Numerals or Figures (숫자 또는 도형을 사용하여 제시된 비정형적인 문제에서 학생들의 반응에 대한 연구)

  • Hwang, Sun-Wook;Shim, Sang-Kil
    • The Mathematical Education
    • /
    • v.49 no.1
    • /
    • pp.39-51
    • /
    • 2010
  • The purpose of this article is to study students' responses to non-routine problems which are presented by using solely numerals or symbolic figures. Such figures have no mathematical meaning but just symbolical meaning. Most students understand geometric figures more concrete objects than numerals because geometric figures such as circles and squares can be visualized by the manipulatives in real life. And since students need not consider (unvisible) any operational structure of numerals when they deal with (visible) figures, problems proposed using figures are considered relatively easier to them than those proposed using numerals. Under this assumption, we analyze students' problem solving processes of numeral problems and figural problems, and then find out when students' difficulties arise in the problem solving process and how they response when they feel difficulties. From this experiment, we will suggest several comments which would be considered in the development and application of both numerical and figural problems.

Numerical Analysis on the compressive behavior of closed-cell Al foam (닫힌 셀 구조 Al 발포 재료의 압축 거동에 대한 수치해석)

  • Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1663-1666
    • /
    • 2007
  • The finite element method is applied to analyze the deformation mechanisms in the closed-cell Al foam under the compression. The modeling of the real cellular structure proceeds with the concept of the reverse engineering. First of all, the small, $10{\times}\;10{\times}\;10mm^3$ sized specimens of the closed-cell Al foam are prepared. The micro focus X-ray CTsystem of SHIMADZU Corp. is used to scan the full structures of the specimens. The scanned structures are converted to the geometric surfaces and solids through the software for 3-D scan data processing, RapidFormTMof INUS Tech. Inc. Then the solid meshes are directly generated on the converted geometric solids for the finite element analysis. The large elastic-plastic deformation and 3-D contact problems for the Al cellular material are considered. The clear and successful analysis for the deformation mechanisms in the closed-cell Al foam is carried out through the comparison of the numerical results in this research with the referred experimental ones.

  • PDF

Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism (평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석)

  • Jeon, Jung In;Oh, Hyun Suk;Woo, Sang Hun;Kim, Sung Mok;Kim, Min Gun;Kim, Whee Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.