• Title/Summary/Keyword: Geometric Optimization

Search Result 412, Processing Time 0.026 seconds

Optimum Thickness Distributions of Plate Structure with Different Essential Boundary Conditions in the Fundamental Frequency Maximization Problem (기본고유진동수 최대화 문제에 있어서 경계조건에 따른 판구조물의 최적두께 분포)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.227-232
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

Optimal Geometric Design of Transverse Flux Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 횡자속 선형전동기의 형상최적설계)

  • Hong, Do-Kwan;Woo, Byung-Chul;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.498-504
    • /
    • 2006
  • Thrust force of linear motor is one of the important factor to specify motor performance. In this study, we optimized maximizing the thrust force of TFLM(Transverse Flux Linear Motor) using Response Surface Methodology by the table of orthogonal way. The Response Surface Methodology was well adapted to make the analytical model of the maximum thrust force and enable the objective function to be easily created and a great deal of the time In computation to be saved. Therefore, it is expected that the proposed optimization procedure using the Response Surface Methodology can be easily utilized to solve the optimization problem of electric machine.

Characteristics of the Integrated Steam Generators for a Liquid Metal Reactor

  • Sim Yoon Sub;Kim Eui Kwang
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.127-141
    • /
    • 2004
  • Various types of integrated steam generators, which integrate IHTS and a steam generator into a single unit of equipment for an LMR, were analyzed using an analytic solution with some simplification. The analysis showed that the undesirable reversed heat transfer, of which occurrence was previously observed only in an integrated single-region bundle type, can also occur in an integrated double-region bundle type. The mechanism of the reversed heat transfer occurrence in the double-region type is explained and it is shown the mechanism in the double-region type is completely different from that in the single-region type. Based on this finding, a method for preventing the aforementioned heat transfer is suggested. The performance of the four types of the integrated steam generators is assessed. For this assessment, a SG is actually designed for each type and the optimization in the geometric parameters and flow rate are optimized.

Optimization of Earthwork Operation for Energy-saving using Discrete Event Simulation

  • Yi, Chang-Yong;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.537-539
    • /
    • 2015
  • considerate operation is a major issue in the equipment-intensive operation. Identifying an optimal equipment combination is important to achieve low-energy operations. An Earthwork operation planning system, which measures the energy consumption of construction operations by taking into account construction equipments' engineering attributes (e.g., weight, capacity, energy consumption rate, etc.) and operation conditions (e.g., road condition, attributes of materials to be moved, geometric information, etc.), is essential to achieve the low-energy consumption. This study develops an automated computerized system which identifies an optimal earthmoving equipment fleet minimizing the energy consumption. The system imports a standard template of earthmoving operation model and compares numerous scenarios using alternative equipment allocation plans. It finds the fleet that minimizes the energy consumption by enumerating all cases using sensitivity analysis. A case study is presented to verify the validity of the system.

  • PDF

Automatic FE Mesh Generation Technique using Computer Aided Geometric Design for Free-form Discrete Spatial Structure (CAGD를 이용한 프리폼 이산화 공간구조물의 유한요소망 자동생성기법)

  • Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.77-86
    • /
    • 2010
  • This paper provides background theories and numerical results of automatic finite element (FE) mesh generation for freeform discrete structures. The present method adopts the computer aided geometric design (CAGD) technique to overcome the limitation of case-sensitive traditional automatic FE mesh generator. The present technique involves two steps. The first one is to represent the shape of the structure using the geometric model based on the CAGD and the second one is to generate the discrete FE mesh of spatial structures over the geometric model. From numerical results, it is found to be that the present technique is very easy to produce the FE mesh for free-form spatial structures and it can also reuse some features of traditional automatic mesh generator in the process. Furthermore, it shows the possibility to be used for the shape optimization of large spatial structures.

  • PDF

Automatic Estimation of Geometric Translations Between High-resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 자동 변위량 추정)

  • Han, You Kyung;Byun, Young Gi;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Using multi-sensor or multi-temporal high resolution satellite images together is essential for efficient applications in remote sensing area. The purpose of this paper is to estimate geometric difference of translations between high-resolution optical and SAR images automatically. The geometric and radiometric pre-processing steps were fulfilled to calculate the similarity between optical and SAR images by using Mutual Information method. The coarsest-level pyramid images of each sensor constructed by gaussian pyramid method were generated to estimate the initial translation difference of the x, y directions for calculation efficiency. The precise geometric difference of translations was able to be estimated by applying this method from coarsest-level pyramid image to original image in order. Yet even when considered only translation between optical and SAR images, the proposed method showed RMSE lower than 5m in all study sites.

A Study on Suction Pump Impeller Form Optimization for Ballast Water Treatment System (선박평형수 처리용 흡입 펌프 임펠러 형상 최적화 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.121-129
    • /
    • 2022
  • With the recent increase in international trade volume the trade volume through ships is also continuously increasing. The treatment of ballast water goes through the following five steps, samples are taken and analyzed at each step, and samples are obtained using a suction pump. These suction pumps have low efficiency and thus need to be improved. In this study, it is to optimize the form of the impeller which affects directly improvements of performance to determine the capacity of suction pump and to fulfill the purpose of this research. To do it, we have carried out parametric design as an input variable, geometric form for the impeller. By conducting the flow analysis for the optimum form, it has confirmed the value of improved results and achieved the purpose to study in this paper. It has selected the necessary parameter for optimizing the form of the pump impeller and analyzed the property using experiment design. And it can reduce the factor of parameter for local optimization from findings to analyze the property of form parameter. To perform MOGA(Multi-Objective Genetic Algorithm) it has generated response surface using parameters for local optimization and conducts the optimization using multi-objective genetic algorithm. with created experiment cases, it has performed the computational fluid dynamics with model applying the optimized impeller form and checked that the capacity of the pump was improved. It could verify the validity concerning the improvement of pump efficiency, via optimization of pump impeller form which is suggested in this study.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF